

No Bugs

By David Thielen

© Copyright 1992 by David Thielen. All Rights Reserved.

www.windward.net

The Windward Difference
Reporting and document generation should be simple, but the solutions
most companies build or are forced to rely on make it overly complex,
tedious and technical. Why can’t generating reports and documents from
your company’s data sources be as simple as creating a Word document,
Excel spreadsheet or PowerPoint deck?

Introducing Windward Studios

Windward Studios creates software applications that simplify how
businesses design and generate professional documents and reports.
Our solutions, which are ideal for document-intensive industries such as
finance, healthcare and insurance, are used by software companies (OEMs)
and IT consultants (SIs) who need to integrate reporting into their products.

What sets us apart:

1.	 A ten-year track record of high-quality solutions.

2.	 A focus on our customers’ needs for superior template design, drag-
and-drop functionality and flexibility with coding and data sources.

3.	 Excellence in customer service, with ample documentation, code
and report samples and support resources.

As Simple as “Embed, Design and Deliver”

Our software simplifies how you add reporting and document generation functionality into your new or existing
software application - in as little as 14 lines of code. Once you embed the code, your customers or in-house business
professionals can design templates in Office that meet their exact reporting needs. Delivery is a push of a button.

No more begging a vendor or IT department to produce or continually tweak reports. It’s an efficient, fast and
hassle-free experience that our customers tell us can actually make generating reports fun. Imagine that.

For details about the technology, its applications, and how it’s been successfully deployed, visit our Solution pages.

Meet Windward Studios

•	Founded in 1997, headquartered in
Boulder, Colorado, USA.

•	Windward customers span over 70
countries and all industries, including
financial services, insurance, energy,
healthcare, HR and technology.

•	The Windward Embedded Solution
consists of two components: (1) an
embeddable .NET or Java Engine, and
(2) AutoTag, a template designer for
Microsoft Word, Excel or PowerPoint.

•	The Windward Packaged Solution
is an out-of-the-box Web application and
portal for non-programmers. It requires
the AutoTag template designer.

•	Windward delivers exceptional support,
training, and documentation, with a 98%
satisfaction rating from our customers.

•	Windward is a Microsoft Gold Partner
and Oracle Gold Partner.

To find out more, contact us for a consultation, live demo or free software trial.

 www.windward.net • sales@windward.net • +1.303.499.2544

Templates

Your Data

Output

Template Designer

Your Software
Product

http://windward.net/solutions/
http://windward.net/solutions/
http://www.windward.net
mailto:sales@windward.net

© Copyright 1992 by David Thielen - All Rights Reserved

TABLE OF CONTENTS

Table Of Contents .. 4

Update ... 7

Preface ... 8

Introduction .. 1

What is a bug? .. 8

General Principles ... 13

Some Basic Tricks .. 28

Assert the World .. 42

Debug Printfs ... 56

Watching the Stack .. 67

Watching the Heap .. 73

File I/O .. 97

Special Tricks for c++ .. 110

Special Tricks for assembly language 118

The Testing Process ... 128

Shipping the Product .. 150

Useful bug-discovery tools .. 155

Debug Message Boxes ... 174

Debug Second Monitor ... 187

© Copyright 1992 by David Thielen - All Rights Reserved

To my Parents,
Mickey and Cynthia Thielen

You gave me more than I can ever repay
- I love you

UPDATE

16 June 2009 – Wow, time flies. This was written 17 years ago and in many
ways it describes a very different world from the one we work in today. Java &
C# have eliminated entire classes of bugs discussed here. Unit tests have
proven themselves to be a very powerful tool. And the debugging tools we
have today – wow.

But with all that said, the first two chapters here are, I think, every bit as useful
and powerful as they were when first written. I trust you will find what is
written in those chapters of help in writing rock solid code. And I welcome any
comments on my blog.

Thank you – David Thielen
Boulder, CO

http://www.windwardreports.com�

© Copyright 1992 by David Thielen - All Rights Reserved

PREFACE

As a rule, no one works in a vacuum. Writing this book was no exception to the
rule. First and foremost, I would like to thank my wife, Shirley, both for her
support in helping me write this book and in general for marrying me. I would
also like to thank my two daughters, Winter and Tanya, for allowing me to
work occasionally when I should have been playing with them.

This book is filled with tricks I have picked up over the years. Some I have
figured out by myself while others are "stolen" from other developers. I owe
particular thanks to Gordon Letwin and Mike McLaughlin, from whom I
learned quite a few of these tricks, as well as to Andy Barnhart, Scott Quinn,
and Pete Stewart.

I would also like to thank a number of other programmers with whom I have
worked over the years—not just for ideas on writing bug-free code but for
making me a better developer with their ideas, their feedback, and their
friendship. If I tried to list all their names, I would forget someone, so I'd like
to extend my general gratitude to the people I work with at Microsoft, those I
used to work with at Harris & Paulson, and special thanks to those at DTS, my
first company.

Special thanks also to Microsoft Corporation, the place where I learned about a
testing system that really works (MS-DOS 5.0) and a wonderful environment
for a software developer. As I reach each mountaintop, I find ever greater
heights to scale before me.

A secret until now known to very few people is that my writing sucks.
Fortunately, I have had individuals who have turned my raw text into
something not only readable but, hopefully, enjoyable to read. The only reason
you will be able to understand what is in this book is because Jean Zimmer
turned a group of awkward sentences into flowing and understandable prose.

I showed the first draft of this manuscript to a number of people, and their
comments helped me to change the book for the better. This group of people
includes Joe Hayes, Marianne Jaeger, and Paul DiLascia.

Thanks to the people at Benchmark Productions and Addison-Wesley, without
whom this book would not have been published. This group includes Chris
Williams, Amy Pedersen, and Andrea Mulligan.

Finally, "domo arigato gozimasu" to the editors at Village Center (Japan),
whose encouraging response to my No Bugs article in their magazine C Journal
led me to write this book. Without their feedback on the article I would never
have written this book. This includes Tak Nakamura and Sano Koji.

The ultimate test for any book is its ability to help you out you, the reader. I
hope you find this book lets you write code that has fewer bugs. And more
importantly, I hope this book makes writing bug-free code easier so you can
spend more time on the fun parts of developing the next killer program.

Dave Thielen
Redmond, WA

March 1992

 1 No Bugs

Chapter 1

INTRODUCTION

Attempt 1

We've all been there. We've finished up our new application. It's been copied
and shipped out the door. It's arriving at our first customers - and the phone
rings.

It starts as a technical support question. But the problem gets escalated and
pretty soon it becomes obvious - there is a bug in the program.

And not just some little insignificant bug that user's can work around - this is a
big hairy bug that gets right in the face of each and every user and essentially
stops them from using the program.

It doesn't matter how many customers you have, having to replace 100% of the
copies of your program out there is a horrendous expense. And the cost is not
limited to actually replacing the disks. You now have a reputation for
delivering buggy software. This reputation will be costing you sales for the
next several years - perhaps enough that a product that would have succeeded
now fails.

If you cringe every time the phone rings after shipping a new product - then
this book is for you.

These bugs can have more than just a financial impact. The most standard
program in the world may be in use in a cardiac care unit in a hospital. A small
failure in a copy program could change a number in a loan application. A
vertical market application may have a businessman reporting incorrect
information to the government (which happens to be a felony). Somebodys
word processor was used to type up the specifications to the airplane you are
flying in.

2 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

People come to depend on programs in ways that the author never forsaw or
intended. But they do depend on these programs. And just as you expect the
airplane you are flying in to not come apart in mid-air, people expect their
programs to operate as expected.

Users now expect, and in many cases get, software which, while not bug free,
they will never see a bug in. Over the next several years, they will demand this
robustness in all of their programs.

Attempt 2

I recently had this bug in some code reading from a data port. What was
driving me crazy was that while I was reading the data a byte at a time, every
once in a while my buffer pointer would be off by two.

I placed assertion checks throughout my code to make consistency checks.
And the same thing kept happening - it would pass the tests until suddenly it
was off by two.

Finally I asked a co-worker to take a look at the code. After studying it for
awhile, he came back and said he saw nothing wrong assuming the function
calling me hadn't set the direction flag (we're into x86 assembler here).

To make a long story short, the function calling me did not guarantee to clear
the direction flag. Its just that it was usually clear.

Not only could this bug have slipped through - I wasn't even testing properly
for it. In an environment we make assumptions (such as n = 1 + 2; will give us
3). Unfortunately, we almost always include in this list of assumptions things
that are almost always true.

To add insult to injury, a summer hire porting this same code came in and
pointed out that I didn't clear the direction flag. I showed him where I did it
earlier but told him about spending a day determining that I had to do it. He
told me that I just should have shown it to him first - which is unequivicable
proof that summer hires should be tortured.

Another case many years ago I wrote a program that included a weird kind of
word processor. Because of the requirements, the file format of the word
processor was quite complex and we had some bugs in the code.

 3 No Bugs

This was in the early days of the PC and I didn't have all the ideas layed out in
this book to use writing the program. There were some bugs in how we were
handling the file format. I knew that much but I couldn't seem to find that
bugs - at least not all.

Finally, in desperation, I put code in to check the consistency of the file and to
correct it when it found problems. As time went on, I found additional bugs in
my regular code, which I fixed and I added to the consistency checks and error
correction.

While I kept reducing the bug occurances, I couldn't eliminate them. Finally, to
make testing easier, I ripped out the consistency checks and error correction to
track down the bugs - and the bugs went away. I had apparently fixed the
original bugs but bugs in my bug-fix code had introduced new bugs in the
meantime.

And then there are the horror stories you hear of elsewhere (thank god there is
always someone doing something much dumber or worse than you).

There is one company where they prefered to not test the product because then
bugs were reported and they would have to fix them. Of course, when the
users reported the bugs they had to be fixed anyway.

At another company, management would schedule when all bugs were going
to be fixed and on that day, by definition there were no remaining bugs. Of
course, there were lots of immediate feature enhancements that users requested
that were implemented shortly after shipping.

Who this book is for

Most developers know that software is inherently buggy. And most
developers also, hopefully, want to eliminate these bugs before shipping a
product. This book is written for these people.

However, writing code with no major bugs (sorry, we haven't yet reached the
point of truely bug-free code yet), is a team effort. It takes the work of more
than just the developers. It takes testers, managers, support personel, and
many more. And this book is aimed at these people too.

4 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

This book is designed to solve a problem - buggy code. Because it is aimed at
the problem instead of a specific audience (ie, just developers or just testers),
parts of this book may not be interesting to certain audiences. Chapters 3 - 10
are written mainly for developers. Chapters 11 & 12 are written mainly for
testers.

Yet the book is written to be read straight through. If you want to develop
minimally buggy code, then you have to understand all of the pieces that go
into getting there. Developers need to understand the test process. Testers
need to understand what the developers will be testing on their own.

Most importantly, the managers and others responsible for insuring that the
whole orginazation works need to understand the process. And as important,
they need to insure that the process is actually being followed.

Finally, this book is written from the Windows/DOS/PC perspective. While
most of the ideas discussed are generic to any computing platform, many of the
implementations are specific to the PC. And some of the code is specific not
only to the PC, but to specific compilers (stack checking has a tendency to be
that way).

If you program on a platform other than the PC, in a language other than c, you
will still find this book valuable but you will also find that it leaves a lot more
work for you to incorporate the ideas here.

No bugs

Almost all software developers agree on two things: Software development
takes too long and software is too buggy. With the advent of graphical user
interface (GUI) applications, this situation will only get worse. Not only are
most programs adding functionality (more to test), but the message-based
architecture has changed it from difficult to impossible to test all possible
combinations of commands.

While this book is titled No Bugs, it does not tell you how to write bug-free
code. Everyone says bug-free like some kind of mantra but it just isn't possible
with today's tools and technology.

This book focuses on delivering code with as few bugs in it as possible. Just as
important, it also focuses on knowing what bugs still exist in the program
before you ship it.

 5 No Bugs

Eliminating bugs breaks down into three steps:

1) Putting the bug in the code (yes, you put it there)
2) Finding the bug
3) Fixing it

This book is entitled No Bugs because it attempts to minimize the first step,
putting a bug in the program. By reducing the number of bugs in code as you
write it, you can drastically shorten the amount of time necessary to complete
and test the program. Most of the tricks presented in this book do not actually
stop you from writing buggy code. In other words, you will still make the
same mistakes you made before. But your program will wave a red flag upon
discovering a bug. This immediate notification of your errors will allow you to
fix them quickly and painlessly.

Most of the tricks are quick and unobtrusive. Everyone knows writing bug-
free code is critical, but most developers are loath to spend time eliminating
bugs when they are working on a tight time schedule (with managers
breathing down their necks), or more interesting code-writing awaiting them.
These tricks are designed so that a developer in a hurry will want to use them.
With a few hours of practice, you can implement most of the enclosed code
samples, and you won't really see any of this new code until it finds a bug.

Testing

An important, and mostly ignored, part of the code-writing process is testing.
Every software program, no matter how simple, has bugs in it. Every testing
process, no matter how thorough, lets some slip through. However, the final
determiner of a program's relative "bug-freeness" is the testing process it is put
through.

Chapter 12 of this book discusses testing. The PC industry has matured greatly
over the past several years. Users now expect their software to be bug free and
to work as expected. What would have been consider rock-solid several years
ago is now considered so bug-ridden as to be worthless. And a worthless
product is not purchased.

A good testing strategy can help you deliver a rock-solid product under almost
impossible circumstances. The MS-DOS version 5.0 operating system offers
an impressive example of what a thorough, intensive testing strategy makes

6 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

possible. MS-DOS 5 was designed to run on every existing PC system,
regardless of the system's hardware and software. It had to run on PCs built
before anyone was sure what compatibility meant, and it had to run with TSR
(Terminate & Stay Resident) combinations that were presently running only via
luck.

Thanks to an extensive testing process, MS-DOS 5 was shipped without a
single significant bug. Microsoft shipped a solid product.

By setting up, and following, a good testing system, you end up shipping a
solid product. If you ship a product and have to cross your fingers, you can be
pretty sure its bugs will come back to haunt you.

This book

This book is designed to teach methods for writing bug-free code. Complete,
fully functioning code examples would have expanded this book to an
unacceptable length, so I have included illustrative code fragments only.
Several pieces of full code follow in an appendix.

This book also gives you all of the information you need to create your own
debugging code, but it doesn't provide the actual code. You may order a disk
that includes complete source code. Ordering information appears at the back
of the book.

More Tricks

This book by no way lists all the possible tricks being used. It merely lists those
tricks that I have invented or learned of. If you have some ideas of your own,
please let me know about them. If I get enough new items, then I can include
them in a revised edition of the book. I will, of course, provide full credit to
you unless you request anonymity.

 7 No Bugs

http://www.windwardreports.com/�

8 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 2

WHAT IS A BUG?

This is the most important chapter in the entire book. The very simple
question, What is a bug, actually has a very complicated answer. This chapter
is devoted to answering that question. Because, until we know what a bug is,
we don't have a chance of minimizing them.

A developer I know once said, "Bugs should not be called bugs, they should be
called Massive Fuck-Ups [MFUs]." "Bug" connotes that some outside agency
decided to infest your program with bugs and that if you live a clean life, and
sacrifice small furry animals at the foot of your computer, they will go away.

MFUs exist because programs are written by people, and people make
mistakes. The only way to eliminate MFUs is to go into your code, find the
bugs, and fix them.

This is the most critical concept to understand (and the one most often blown
off). You will write MFUs. You will sit down and with complete malice of
forethought put MFUs in your code. Think about it - you know that you are
the one putting the bugs in there. So if you sit down to code, you will be
inserting some bugs.

And somebody needs to find them so you can remove them. No amount of
designing, prototyping, CASE, reviewing, management, and so on, will avoid
this.

This concept is important because it colors your approach to debugging your
code. If you view mistakes as "bugs," you hope none are found. (You hope the
good fairy came by, sprinkled pixie dust, and the bugs left.) If you view the
mistakes as MFUs, you know they unquestionably exist, and you hope to find
all of them so that they can be fixed.

 9 No Bugs

It is critical that developers and managers feel good, not bad, if MFUs are
discovered. They should worry if they don't find any. Rather than assuming
your program works and waiting for someone to prove otherwise, a developer
should assume it doesn't work and search desperately for the bug that will
make it fail.

So, for the moment, you have to accept that you will create MFUs in your code
(I sure manage to put a lot in my code). I do not know of any way to avoid
that. The trick then becomes to find and correct them as painlessly as possible.

As a side note, the term "bug" is so firmly established in the lexicon of
developers that I see no way MFU will replace it. However, I think it is
important that you occasionally refer to bugs as MFUs to remind people that
bugs are "intentionally" placed in the code due to a developer's mistake.

When developers insist that bugs are not MFUs, you should worry. Why?
Because they have abdicated responsibility for ferriting them out and fixing
them. This is when its critical to remind them that they are MFUs. Its much
harder for someone to avoid responsibility when are told there is an MFU in
their code than when they are told there is a bug in their code.

So what is a bug? Well, if you run the program and it formats your disk
(assuming you are not writing a format program), most people will agree that a
bug did it. From this point on, opinions start to differ. I hear statements like:
"No one uses that feature so it's ok that it will trash the hard disk"; "Just tell them to
buy a parallel port printer"; "They can override the result so its okay that it doesn't add
up correctly", and "That's not a bug, that's a feature!" The same people who find
this type of thing acceptable in the programs they write will turn around and
categorize bad design in a program they bought as a bug.

By my definition, if a reasonable person would expect certain functionality, or
for a program to work in a certain manner, and it doesn't—there is a bug.

Where bugs come from

How do bugs get into a program? Very simply: You put them there. With
reckless disregard, you sit down and type some buggy code into your program.
It does not sneak in on its own. You might mistype a line. You might use a
wrong variable. You might copy over some code from elsewhere that doesn't
quite work. In any case, it is YOU YOU YOU.

10 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Every time you code, you insert more bugs. This is one of the dirty little secrets
of programming. Programmers write code and create bugs every day. Good
coders are generally really good at creating bugs. That way our employers
have to keep us around to fix all of the bugs later (COBOL programmers
learned this years ago).

Tricks of the trade

This book does not contain any tips on how to stop creating bugs. It does
contain tips on how to make bugs more obvious. A bug that always crashes
the program is preferable to one that crashes only one system; the one located
in Siberia. If it always crashes the system, you will fix it immediately. If it only
crashes in Siberia, you might get sent there to fix it (and possibly with no
return ticket).

A bug that causes a message box to pop up, stating that a problem exists, is
preferable a system crash. It might not fix the bug for you, but at least it tells
you exactly what is wrong. The trick is to catch a bug as soon as something
goes wrong, not to later discover the problems it has caused.

Every C programmer has undoubtedly had to track down a loose pointer bug
where a pointer writes over memory that doesn't belong to it. Later in the
program, you find the bug when you use the memory the loose pointer
corrupted. You then have to work backwards to see who wrote over the data.
Wouldn't it be much nicer to have a pop-up box notify you when the pointer
first writes over the data, informing you immediately that you have a bad
pointer?

The next chapters contain a number of practices that I have developed over the
years to help me debug my code. The important thing about these practices is
that you implement them while you write the code. They help you weed out
bugs much earlier and as part of the development process rather than after the
product is turned over to testers (or even worse, users).

These practices will reveal bugs that might otherwise be hard to find, making
development faster and easier. They also find bugs that developers might
normally spend hours or days trying to fix during initial development.

This book assumes that you will all have bugs in our programs. It is an attempt
to minimize the number of bugs that are initially written into code, making it

 11 No Bugs

easy to find the remaining bugs. In most cases, it eliminates certain classes of
bugs.

Finding those MFUs

Given the level of complexity in today's programs, especially those written for
message-passing architectures such as that of Windows or Macintosh's
operating system, it is impossible to test for all possible combinations of uses.
Instead, you need to test each message in such a way that you feel confident it
will work in combination with any other set of messages.

Over the years, by using the tricks described in this book, I have drastically
reduced the bugs that make it to the testing stage. I have also spent a lot less
time debugging and a lot more time coding. I not only get more done—I also
spend less time wanting to kill myself because I can't find a bug. More
importantly, the code I generate is not shaky. A bug or two still might get
through to testing, but the bugs that do get through generally arise only if a
very rare specific sequence of events occur.

If you use these tricks, you will be able to generate more code with far fewer
bugs. It is critical, however, that you implement these tricks as you go; not
after you are done. You might be surprised at how easy early debugging
becomes. When you have a mistake, a pop-up window tells you what you did
wrong. And you will rarely have to track down some subtle bug that takes
days to discover.

Create a list

The best start to fixing bugs is to prioritize jobs. Which is more important,
adding a feature or fixing a bug? Suppose you're aware of two faults with your
word processing program: It lacks a print feature, and it has a bug that keeps it
from finding words beginning with "z." You prioritize adding a print feature
over fixing the find feature.

Create a priority list. Call it "bug list," call it "to do list," call it anything you
want, but maintain only one list for all jobs. If you have two lists, you have to
decide which task to take care of if there time for only one of many.

By keeping one list, the work remaining on your program will be a known
quantity. You will know, in order of importance, which bugs to fix and what

12 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

features to add prior to shipping. Without this knowledge, you are left hoping
that everything will come together—that luck will ensure the right features are
added and the bugs are magically chased out of the program.

 13 No Bugs

Chapter 3

GENERAL PRINCIPLES

Starting with this chapter, we now discuss how to develop code in such a ways
as to minimize bugs. This chapter lays out the general principles to follow
when implementing all of the tricks listed in the following chapters.

The principles discussed here hold, not just for the methods described in this
book, but for almost any other tricks you may invent yourself. Another way to
view this chapter is as a philosophy to follow. For non-programmers, this
chapter is readable but definitely optional. For developers, this chapter is the
basis for all the following chapters on programming tricks.

Debug code is read only

A common problem that I have seen in many programs is that the program
runs fine with debugging turned on but blows up with debugging turned off.
(Debugging can be turned on and off many ways as discussed later in the book.
However, the most common is with the use of #ifdef DEBUG and #endif.) I
even know of one commercial program that was shipped with debugging
turned on, but its debug printf disabled, because it wouldn't run in non debug
mode.

This problem generally occurs because the code in its debug checking, will
return from a function if it determines that an incorrect parameter is passed.
However, if debug is turned off, the same checking does not occur and the
function does not return an error.

There is a simple solution to this. All debug code should be read-only. What
does this mean? Obviously it means read data but never writes to it. Just as
important however is that it does not affect the code path. The debug code is
executed - but it never causes the subsequent code path to change. Debug code
is the equivilent of calling a function that returns void.

14 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

All debugging code should be placed within an #ifdef DEBUG so that the
testing can be turned on and off. In addition, put all functions used exclusively
in debug mode within #ifdef DEBUG so the function doesn't exist in the final
version of the program. The linker will then let you know if you are still
calling debug code with debug turned off.

Debug code

#ifdef DEBUG
void DebugCheck (char *p)
{
 ...
}
#endif

In the case of macros, you can define the debug macro inside a #ifdef DEBUG
and then define a macro that generates no code for the #else. Using macros
leaves your code a lot cleaner. Instead of #ifdef DEBUG statements littered
throughout your code, you have just the macros, resulting in cleaner-looking
code. The example below illustrates the use of these macros.

Debug macros

#ifdef DEBUG
#define DebugMacro(p) DebugCheck (p)
#else
#define DebugMacro(p)
#endif

Using Debug Macros

// clean:
 p = GetBuf (0);
 DebugMacro (p);
 WriteBuf (p);

// too busy:
 p = GetBuf (0);
#ifdef DEBUG
 DebugCheck (p);
#endif
 WriteBuf (p);

 15 No Bugs

It is critical that the debug code treat the applications data as read only.
Implement the use of the debug code so that it makes no difference what code
is executed outside the debug ifdefs. If the debug code fixes data or causes a
different path to be taken through a function, then when the debug is removed
(or undefined), you will have a different program—and your debugging is
hurting instead of helping you.

If your debug code finds a parameter error, the debug code should not cause a
return from the function. If you want to perform the same error checking in
non-debug mode, the correct method would be to perform the same check
again in your non-debug code after the debug check, and then return. The
point of the debug code is not maximum speed or minimum size but rather
maximum debugging.

The program below illustrates a code path that is read-only and one the isn't.
Notice in the incorrect example, the function can handle a NULL pointer
passed in only if DEBUG is turned on.

Proper use of DEBUG

// correct (read-only):
#ifdef DEBUG
 if (! pSrc)
 ErrorPrintf ("Source String NULL\n");
#endif
 if (! pSrc)
 return (NULL); // We handle NULL even if DEBUG is off

// incorrect (not read-only):
#ifdef DEBUG
 if (! pSrc)
 {
 ErrorPrintf ("Source String NULL\n");
 return (NULL); // you will now die when DEBUG is off
 }
#endif

16 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Exercising code paths

The hard to find bugs generally occur under circumstances that are relatively
rare. After all, if the program re-boots your system every time you run it, you
will usually fix that error.

Some of these rare cases are caused by executing a code path that has never
been executed before. When your program first starts, you will generally do a
malloc or two. You have a code path you take if the malloc fails (you don't
assume it succeeds do you?) but has it ever failed?

If not, you have an accident waiting to happen. What does your program
actually do when that particular malloc fails? As long as you have not tested a
code path, you have not fully tested your program. Be sure that you exercise
every code path. If you have an "if () ... else ..." and you have always executed
the "else" part, then the "if" part is a bug waiting to happen.

The easiest way to test code paths is via two macros; Trap () and IntTest. Trap
() will advise the tester if the expression in the paranthesis is true, and IntTest
will advise the tester regardless of the result. For each conditional (if, for,
while, do, & switch) put a combination of Traps and IntTests so that you will
hit a Trap or IntTest for each possibility.

When you hit an IntTest or Trap, you can do one or two things. You can do a
printf that you hit that particular code path. Or you can place an int 3 so your
debugger will stop at that line of code. If your debugger is a source-level
debugger, then there is no need for a printf—when the debugger pops up, it
will tell you where you are.

If the "if" contains increments (i++), function calls, or other code that cannot be
executed twice, then put an IntTest in the "else." If there is no "else," put one in
for debugging. The program example below illustrates the use of these macros.

Trap Macros

#ifdef DEBUG
#define IntTest _asm { int 3 }
#define Trap(t) ((T) ? _asm { int 3 } :)
#define TrapNot(t) ((T) ? : _asm { int 3 })
#define IntTestElse else _asm { int 3 }
#else

 17 No Bugs

#define IntTest
#define Trap(t)
#define TrapNot(t)
#define IntTestElse
#endif

Use of IntTest and Trap

The program example below illustrates the use of the above
macros.

 TrapNot (i > 0);
 if (i > 0)
 {
 IntTest;
 i--;
 }

 Trap (i <= 0);
 TrapNot (j > 0);
 while ((i > 0) && (j > 0))
 {
 IntTest;
 i--;
 }
 IntTest;

 if (i++ < 100)
 {
 IntTest;
 j--;
 }
 IntTestElse;

If the "if" is not executed, TrapNot will notify you by dropping you into your
debugger. If the "if" is executed, IntTest will notify. I use an "int 3" to put me
in Soft-Ice (the debugger I use) for each of these. I then walk through the
function to ensure that the code path works correctly. Once you have tested a
code path, remove all the Traps and IntTests that you hit testing the path.

As time goes on, you will find fewer and fewer Traps and IntTests remaining.
You will then have to devise special tests to actually force those paths to be hit.

18 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Once you have exercised all possible code paths, you have not ensured that all
possible combinations of code paths will work, but it does ensure that each
subpath has been tested.

Walking each path

Walk yourself through each code path in each function. You do not have to
walk through every combination of paths, but you should walk through every
part of each function. Watching the affected variables as you single-step
through functions will often make a bug stand out.

As you walk through, sometimes you can move quickly and other times you
might want to watch several variables at each step. Use your judgment. In
most cases simply watching the program run and focusing on one or two
variables allows you to single-step through quickly. Suddenly, the code will
do the opposite of what you expect on a conditional, and then you should pay
very close attention to everything.

Unfortunately, there is no set of rules that tell you how careful to be and what
to watch for any type of program. The one rule I almost always follow though,
is the first time I go through a function, I look at all the parameters on entry,
single step through very carefully, and check the parameters on exit.

On subsequent passes through a function, I generally only check those items
that are affected differently by the new code path that caused me to hit a Trap.

As your code nears completion, you will find some IntTests and Traps still in
your code. Just because no one has ever caused that code path to be exercised
is no reason to simply pull them. You should develop special test cases to
exercise those paths. This is a critical step.

Forcing actions

Another set of bugs that occur rarely is due to system functions usually acting
one way, but occasionally another. The most common case is a realloc call,
that, under somewhat common circumstances, will usually return the address
passed in. However, occasionally it returns a different address.

If during your testing, the realloc always returns the same address, then you
have no way of testing if your code properly handles being returned a different

 19 No Bugs

address. You not only have to worry about the variable you pass to realloc, but
if another variable is also holding a pointer to the old (pre-realloc) address.

However, if in debug mode, a realloc would always return a different pointer,
then you know you will handle that properly. In addition, the realloc needs to
put garbage data in the old memory location. Otherwise, a pointer to the old
location would still see legitimate data until that memory is used again.

Whenever you unlock relocatable memory, move it and, if possible, put
garbage data at the old location. If you are caching disk data, as soon as it is
unlocked, write it to disk and clear the buffer. If you are interacting with a TSR
on the timer tick and there are times you set a semaphore to turn the TSR off,
call the timer interrupt on the instruction before and after turning the
semaphore on and the instruction before and after turning it off.

You also want to create an impossibly bad environment for the program. If it
survives, then it should survive any actual situation where resources become a
little tight.

RT-Link, a linker that provides code swapping, does this beautifully. You can
run it with one available code page so all code is swapped into the same page.
This insures that every code page will get swapped in on top of the previous
code page. If any code page depends on another code page also being in
memory at the same time, it will crash the program.

On any call, if an error can occur, it should be tested. Every malloc should be
tested for returning a NULL. Not doing this is criminal, as you will then cause
intermittently noticeable errors only on low memory systems.

Every file open should test for a handle of -1, including creating temporary
files. You should also test all file I/O for success. I have seen programs where
the program assumes a temporary file create and write always succeed. I guess
the developer's RAM drive was always big enough, but mine wasn't. You even
need to check read/writes to existing parts of a file. If a net connection drops,
you cannot access the file.

For one program I wrote, I created a virtual memory system (for DOS) that
would go first to regular memory. If regular memory was used up, it would go
to EMS. If EMS was used up, it would go to disk. So how do I know it all
works? I set it up in debug mode to optionally, always allocate from EMS or
disk. The disk-only version was slow (we're talking big delays on a 486), but

20 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

all the functions worked. In this manner, I was able to force the program to use
each memory system.

If your temporary files are moved to a hard disk if a RAM disk fills up, be sure
to test your application with a RAM disk that is too small. Anywhere you have
backup procedures to protect you in case you run out of your preferred
resource, be sure you can test the entire system using the backup resource.

If you write a TSR that uses semaphores to prevent reentrance, then just before
and after the semaphore, call the interrupt the TSR is sitting on to be sure it will
not reenter itself. The trick is to see if you can break your code.

All of the above tricks are specific to the code they were testing. Every
program, will have different weak points. You need to find those weak points
and then break them. If you are determined to discover those MFUs you put in
your code, then you will be able to figure out how to break your code.

Rock-solid low-level functions

When you add two integers, assuming the result isn't bigger than an integer,
you know that it will work. Think of how debugging would be if you didn't
know this. You would have to check what the add instruction did at each place
you added two numbers and test each with various combinations of numbers.
You basically couldn't program.

Now lets move up a level. What if you aren't positive about strcpy (or any of
the run-time functions). You now can at least program (in fact I remember the
early days of PC compilers when you couldn't depend on these functions). But
it isn't an easy task. Your testing and debugging job has grown by leaps and
bounds.

But you can trust the processor and run-times (if you can't its time to switch).
However, every program has a set of its own low-level functions that are
specific to it. These low-level functions have two important attributes. First,
they are used throughout your program. A minor bug in one of them is a
serious MFU in the program.

Second, you can generally test all possible combinations of program flow in
these low-level functions. Thoroughly test these low-level functions. You
should be able to depend on these calls the same way you depend on a '+'
(add).

 21 No Bugs

To best do this, write test programs that will call your low-level functions with
enough different parameter combinations to test all possible code path
combinations and print to the screen only if the return value is incorrect. That
way, when you make a change to the function, it's very easy to test again.

You have two major gains from exhaustive testing of the low-level functions.
First, part of your code approaches being bug-free. Having part of your code
bug-free should drop the total bug count.

More importantly, although a bug in a high-level function will generally cause
one problem, a single bug in a low-level function (such as linked list
management) can cause innumerable bugs to appear throughout your
program. The low-level functions are the foundation and frame of your
program—if it's solid, the program is then solid. If it's shaky, no amount of
effort elsewhere can then make the program solid.

It is also critical that this testing be performed on all functions that are widely
used, even if they are not low level. If these functions don't work, then you
will get bad data at times and the rest of your program will fail. Although you
might not be able to come up with a complete test suite for something like an
edit window, you should still test it thoroughly. If it has a bug, you will see it
everywhere in your program.

When is a function low-level enough to merit this exhaustive testing? When it
is possible to come up with a set of test cases that will test every possible
combination of entry data. Any function that can be tested this way should be;
this is the single most important step you can make to have bug-free code.

The remaining code might have logic errors (that is, it does not do what you
intended it to) rather than bad code (resulting in, for example, a loose pointer).
Logic errors are usually easier to find and, if they slip through to shipment,
usually easier to work around.

By the way, one of the two major advantages of object-oriented languages, their
bug-free classes, are a result of extensive testing of low-level functions. The
functions might not have test routines, but they have probably been used by
enough people in enough ways that all of the bugs have been wrung out.

If you take another look at your code, you might be surprised by how much of
it you could test this way. You can test practically every command in a
database, every function in a word processor, every tool in a graphics package,

22 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

this way. When you view the program logic, it becomes clear that a small
number of test cases will exercise all the possible combinations of paths
through the code.

If you find you can't test anything this way, that all of your functions depend
on all the other functions, you've got a serious problem on your hands.
However, if you've written really clean, separable (that is, object-oriented
style) code, you will find almost all of your functions are testable in this
manner.

So you have this giant library of code, and you don't want to write test routines
for all of it. So don't. You can write test routines for sets of 15 to 40 similar
functions (for example, strcat, strcpy, str) in about three days. You will find
few bugs, if any. However, those you find will be bugs that in the past you
were never able to reproduce. And if you find no bugs, assuming you wrote
good test programs, you now KNOW that your low-level functions are solid.

If most of your code is testable this way, you might be surprised by how few
bugs make it into the final product if you test the pieces beforehand as
described here.

It may be coincidence, but when I started all-out testing of my low level
functions is when I saw the biggest decrement in bugs in the programs I wrote.
Not only that, but subsequent to doing this, I cannot recall a single instance
where a bug that seriously affected the entire program was found.

 23 No Bugs

24 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Debugging in conditional defines

To maintain speed, most times you will not want all of your conditional error
checking to be compiled. Some of the error checking can take an extremely
long time. (Generally, a specific check does not take a lot of time; rather, the
check is called often).

The other general reason is if you are printing debug information to a terminal
or second monitor, and you don't want useful information to be scrolled off the
screen by other information you have no interest in. Sometimes, the pure
volume of printing can slow down the program because a monitor can write to
the screen only at a certain pace, and no faster.

You can take either of two primary approaches to this problem. The first is to
not compile in the extra debug code. This is much faster because the debug
code flat out doesn't exist, but you will have to recompile if you decide you
need some of the debugging prints back. The program example below
illustrates the use of conditional compiling.

Using the value of DEBUG

#ifdef DEBUG
 fast_test ();
#endif
#if (DEBUG > 1)
 slow_test ();
#endif
#if (DEBUG > 2)
 real_slow_test ();
#endif

The second approach is to test a flag at the beginning of the debug code and
skip it if the test fails. If the flag is a variable, you can change its value in your
debugger, making it easy to turn the debug testing/printfs back on part way
through the program (or turn them off after you no longer need them).

Using the variable

The program example below illustrates the use of a debug
variable.

 25 No Bugs

#ifdef DEBUG
 fast_test ();
 if (DebugVar > 1)
 slow_test ();
 if (DebugVar > 2)
 real_slow_test ();
#endif

Although there are a lot of fancy ways to implement this conditional debug
code, two rules seem to hold. First, you generally don't ever want to turn
debugging on or off after a compile. Second, both ways of implementing this
seems to be equally fast to code and execute.

For simple code, debugging is generally an on/off proposition. In these cases,
using #ifdef debug alone is generally sufficient, and anything more is a waste
of time. For code that is otherwise simple but has a couple of time-consuming
checks, you can use the value for which DEBUG is defined as conditional
compiles.

Keep in mind with conditional debugging that some debug tests are matched.
If your allocate conditionally sets the signature bytes before and after each
region of allocated memory, it better do it if any of the conditional defines that
check the heap for the signature bytes are executed. I once spent several hours
trying to determine why some buffers were failing their CRC tests - the reason
was the CRC creation code had been ifdef'ed out while the checking hadn't.

Comment your open Issues

As you code, issues or questions come up in certain pieces of the code: Will a
function work on a Super VGA monitor? How do you handle data files with a
particular error? Do you need to watch out for a certain error condition?

These questions are not resolved by Traps and IntTests. Rather, they are items
that you believe you have not fully coded for or, in some cases, you have not
coded for at all. In other cases, your program will fail under conditions in
which you need it to continue running.

These are possible logic errors that occured to you at one time or another.
Unfortunately, the human mind being what it is, these errors will be quickly
forgotten (until the bug report comes in). These MFUs are classified as "oh shit"

26 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

bugs - based on the phrase usually heard when the bug is first reported to the
developer responsible.

The place to write down these concerns is in the code itself. Anywhere else and
the place it is written can get lost. If its in the code - its there forever, or until
you resolve the question.

In these cases, place a one-line comment, the word "bugbug" followed by your
initials and the date. You can follow this with a comment that runs for several
lines, but the first line should give a reasonable description.

BUGBUG

The program example below illustrates the use of the BUGBUG
comment.

// BUGBUG DNT 3/21/92 - No memory. Should we go to disk?
// At the moment if we run out of memory we fail. However,
// if this runs on large files, running out of memory could be
// common.

This BUGBUG accomplishes three things.

• By performing a grep or text search for BUGBUG on all the files, you get all
the title lines of open issues. (Note: in the asm chapter, a way is shown to
have the BUGBUGs print to the screen during a compile. Unfortunately c
doesn't support printing during a compile in a manner that makes this
possible.)

• The open issues travel with the code. You can't lose the list of open items
(unless you lose the code too).

• The open items are right there at the relevant spot in the code—you don't
need to search all the files to find the correct spot.

When you ship a product, you should not have any BUGBUGs in your code. In
the above example, you might have decided to go to disk. You might also have
decided you could limit yourself to memory. In either case, the question was
resolved.

If you don't use BUGBUG, you might forget or lose important issues. You
might not remember the issue until users report the bug after the program

 27 No Bugs

ships. Using BUGBUG is simple, and it's more time-efficient than recording the
information elsewhere.

Keep it unobtrusive

Keep your debugging as unobtrusive as possible. The rest of your program
should hardly be affected by debug code. (The program might run a tad
slower, and the user might see a pop-up debug message.) Good debug
checking stays hidden and out of the way until it finds a MFU.

28 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 4

SOME BASIC TRICKS

Now we get into the actual programming tricks. For those of you who have no
idea how to program, if you're still with us, its time to skip to the chapters on
testing. For those of you in management, its time to give your developers a
raise and then skip to the testing chapters.

This chapter has all the tricks that don't deserve a chapter of their own. This
isn't to say these tricks aren't important, merely that they can be explained in
fewer words.

This, and the rest of the chapters until we get to the testing process, both lists
specific tricks and how to implement them. The tricks are described
generically. The code is c (and assembler where required) code for the PC.

Most important, these tricks will allow you to painlessly eliminate bugs from
your programs. These tricks do not add to your work - but they do save a lot
of the time you previously spent debugging.

TestAll functions

Suppose your program is mysteriously crashing. You don't know why or
exactly where. But then you place the TestAll function at various points in
your program. You are now able to narrow down the bug. TestAll reports all is
okay and then, 20 lines later, reports an error. The bug is in those 20 lines.

So what is this magical TestAll function? Quite simply, it calls every global test
function you have. At a minimum, it checks the NULL memory locations, the
entire heap, and the amount of stack left. It also asserts all global data
structures. In Windows programs, it calls the ValidateCodeSegments and
ValidateFreeSpaces functions.

 29 No Bugs

TestAll function

The program example below illustrates the implementation of
TestAll.

void TestAll (void)
{

 // Test system
 TestHeap ();
 TestStack ();
 TestNull ();
#ifdef WIN
 ValidateCodeSegments ();
 ValidateFreeSpaces ();
#else
 TestEms ();
 TestXms ();
#endif

 // Test global variables
 AssertBool (bInsertMode);
 AssertDbase (&MainDbase);
}

Anytime you create a test function that can be called anywhere (globally) to
perform its test, that test should be added to TestAll. Eventually, TestAll
becomes very slow, and because of that you rarely want to call it. However, it
proves invaluable in two places.

• When your program completes a major task (for example, a word processor
saves one file and is about to open another). It is invaluable because you
are switching data sets and you should know which data set doesn't work.

• When tracking down a bug that could be due to anything. It is a quick way
to identify the bug. You place the TestAll function at various places—
where you know the system is still okay up to the point where you know it
is trashed. It will not only find where you first start to mess up your
program; it will also tell you which test failed, helping you identify what is
wrong, and where.

In the below example, funcBad blows up due to an error in the system. But the
code looks error-free. By using the tests, you can determine which function is

30 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

causing the problem. Before walking through funcBad, you can see if func1 or
func2 is actually the culprit although you don't see the bug's effects until
funcBad.

Using TestAll

The program example below illustrates the use of TestAll.

funcMfu ()
{

 funcOk (); //You know this function is okay
 TestAll ();
 func1 (); // Might have a bug
 TestAll ();
 func2 (); // Might have a bug
 TestAll ();
 funcBad (); // See the bug's effects
}

Restoring system state

We have all used programs where the program itself runs fine, but DOS always
seems to lock up shortly after using the program. There is one program I used
to use regularly with no bad affects ever. However, when I ran it in a
Windows DOS box, it would cause a UAE every time when starting.
Obviously, it was playing with memory that didn't belong to it.

When your program is about to exit, you should fully test the system. Many
programmers don't worry about an error message on exit, thinking, after all,
you are exiting—who cares if things are a little screwed up?

This is a very dangerous practice. First of all, many of these errors are
symptoms of bugs that could, under different configurations or use, cause
problems while you run the program. Second, many of these errors are
damaging to the operating system. If your program returns to DOS but DOS
then locks up 5 seconds later, it's still your fault.

Be careful to catch a program's exit under all conditions. In DOS, if you don't
watch for CTRL-C, be sure you are called when the default CTRL-C handler
exits the program. Under Windows, you need to check both when closing your

 31 No Bugs

application and when Windows itself shuts down while your application is
active.

1. Call TestAll. This single call should test the integrity of your system.

2. Call the StackUsed function (discussed later). This call will tell you the
maximum amount of stack space used. Every time you exit the program,
print out the maximum stack size used as well as the total stack size. This
gives you constant feedback, letting you know whether you have set your
stack size appropriately.

3. Compare the interrupt table and any other OPERATING SYSTEM global
variables, such as parts of the BIOS data area that are of interest to ensure
that you have left the system as you found it. This is not a concern under
Windows unless you are writing some VERY dirty code—in which case this
is the least of your problems. Bounds Checker (discussed in the tools
chapter) will check the interrupt table as well as the BIOS data area on exit
to see if you have changed any of it, so there is no sample code here for this.
However, if you don't use Bounds Checker, you need to write a program
that saves the interrupt table on start-up (before the c-run-time
initialization code runs). Then, on exit, compare the existing table (after the
c-run-time _end function runs) with the saved table.

4. Leave the system in the state in which you found it. This is critical to insure
that your program does not swallow up resources every time you run it.
Any files opened should be closed. Any DOS, EMS, or XMS memory you
allocated should be freed. This is critical for EMS and XMS memory
because DOS will not free that memory on exit itself. Also, if this memory
is not freed, your program is probably wasting resources while it is
running.

5. Check your heap for allocateated memory that is not freed. If you use both
the near and far heaps, check both. Unfreed memory generally indicates a
logic error when you finish an action. Even if the only problem was that
you forgot to free a pointer, you are still slowly eating up a scarce resource.

6. Check for files that are still open. This might be indicative of a logic error
when you finish an action. However, open file handles, as well as being a
scarce resource like the heap, are much more dangerous if left open. If the
system crashes, part of the file is still in memory instead of on disk, and the

32 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

file can be corrupted. Second, if another application wants to access the file
and you have opened it with exclusive access, you have locked out the
other application.

7. If you are running Windows, insure that you have freed up all resources.
Some Windows resources are still in very short supply (for example,
Windows has only five screen-device contexts).

Most of the examples in the list above are illustrated later in this book.
However, some programs use resources that are not as general. Be sure that
you have freed up all those resources.

Your mother was right, it is very important to clean up after yourself.

ENTER / EXIT logging

A sometimes useful practice is to log the functions you call. This logging is
written to a debug terminal and/or to a debug file. Essentially, it gives you a
running list of what function you are in and where you were called from.

It can also be used by a debugger to track your call stack. This allows the
debugger to list,by function name, the calls you made (beginning with main) to
get to your present location.

The mose commom method is to make an ENTER macro the first line of every
function and an EXIT macro the return. The ENTER macro prints that the
program is entering the function. The EXIT macro prints that the program is
leaving the function and returns from the function.

You will see the use of __FILE__ and __LINE__ below. These are constants
defined by the compiler. __FILE__ is the file being compiled and __LINE__ is
the line of the file being compiled. Using these constants, you can give the
source location of a debug printf.

ENTER and EXIT Macros

The program example below illustrates the definition of ENTER
and EXIT.

#ifdef DEBUG
#define ENTER(func) DebugPrintf ("Entering %s (%s:%d)\n",
func, __FILE__, __LINE__);

 33 No Bugs

#define EXIT(func) DebugPrintf ("Exiting %s (%s:%d)\n", func,
__FILE__, __LINE__);
#else
#define ENTER(func)
#define EXIT(func)
#endif

Using ENTER and EXIT

The program example below illustrates the use of ENTER and EXIT.

char *strcpy (char *pDest,char *pSrc)
{

 ENTER ("strcpy");

 while (*pDest = *pSrc)
 ;

 EXIT ("strcpy");
}

However, this method leaves a lot to be desired. First, where were you called
from? If a function does not implement ENTER/EXIT, then the function it calls
will appear to have been called by a higher-level function. Second, a given
function might call strcpy from multiple places, some of which might be in
loops. Where was a specific strcpy called from? Finally, if a function exits in
multiple places, you have to place the EXIT macro in all of those places.

A better alternative is to create a macro for calling a function. The macro will
print that the function is being called, including the file and line number of
where it is being called from (using ___FILE__ and __LINE__). The macro will
then call the function. Finally, it will print that the function returned,
optionally including the return value.

The below example will work for any C++ program. However, most of the C
compiler vendors are putting the capabilities required for this (scoping) in their
C compiler also.

Inline ENTER and EXIT

The program example below illustrates the use of ENTER & EXIT.

34 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

#ifdef DEBUG
#define StrCpy(d,s) {DebugPrintf ("Calling strcpy
(%p, %p) from %s:%d\n", d, s, __FILE__, __LINE__); char *r; r =
strcpy (d, s); DebugPrintf ("Return strcpy = %p\n", r); r}
#else
#define StrCpy(d,s) strcpy (d, s)
#define

In the above example, ENTER and EXIT are functions. Functions can track
how deep the function is nested and indent the printfs appropriately. They let
you see the matching EXIT for an ENTER.

Regardless of how you set this up, be sure you don't drown in data. Also, if the
logging occurs on every function call, including those to the low-level library
calls, your program can slow to a crawl as it spends most of its time spewing
vast amounts of data to the debug terminal, virtually all of which is ignored.

So when should you use this? Personally, I have never found ENTER/EXIT
logging to be useful to me. I list it because it is a technique some people use.
However, my reccomendation is that, unless you see a return in doing it, to
skip ENTER/EXIT logging.

Error Message file

In most cases you will probably want to send your debug output to a second
monitor. In some cases, you might want to send it to a log file. The easiest way
to do this is to have the DebugPrintf decide whether printfs are going to the
monitor, the file, or both.

The error file needs to be opened when the program first starts. You will
probably want to either create the file (deleting the previous log file) or use a
new name each time (such as incrementing the extension until you find a
filename not in existence) so that you are not creating a very large file.

You then need to consider committing (DOS function ah=68h) the file on each
write. If you don't do this and the program locks up, you will lose the most
recent writes, usually the ones that tell you why the program locked up.
However, a commit on each write is slow. And you can't use your RAM disk—
that is lost if the system locks up. I have found that writing to a log file, with
enough information and commits to be useful, is so slow as to be useless.

 35 No Bugs

If you do choose to use an error log, under DOS 4.0 and above, you can open a
file using the extended open so that all writes are committed. Use this: It's lots
faster than calling commit file (DOS 3.3 and later). Do this under only DOS 4.0
or later, if at all.

Object-oriented programming

Object-oriented orogramming (OOP) is the buzzword of the moment. It will
solve all your programming problems, give you unlimited wealth, and make
you irresistible to the opposite sex (actually, unlimited wealth will do that too).

The subject of OOP merits a book of its own. In this book, we will discuss how
OOP can help stop bugs from ever showing up. It's also important to discuss
just what parts of OOP give you these advantages.

OOP does not require any specific language. You can write OOP code with
assembly language. But a language like C++ forces you into a number of
object-oriented practices and makes some other practices very easy to
implement.

At the simplest level, OOP means keeping your function separate. For
example, functions that handle circles have no code or data in them for squares.
Code for squares has no code or data for circles. Code for drawing an item has
no code or data for circles or squares—but knows how to call the circle or
square drawing functions.

This separability in your program makes it easy to implement exhaustive tests
for virtually all the functions in your objects. This separability also means that
a change in one object doesn't affect any other object. Use an OOP approach to
your coding. It will pay off in a much-easier-to-test product.

That said, realize that OOP is not a panacea. It makes it easier to do some
kinds of testing but it does not eliminate the need for any tests. It also adds
some new bugs that you normally don't see in c or asm.

Filling buffers

Another bug that makes its presence rarely felt is using buffers before they
have been initialized or after they are free'ed. When you do so, in most cases,
the buffer will still have the correct data. Many other times the buffer will have
legitimate data, although not the data it should - leading to very subtle bugs.

36 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Whenever a buffer is considered empty, fill it with an ID byte (or string if you
prefer). This ID byte should be a value that is invalid for the structure being
filled (-2 usually works for everything). This way, if you access the buffer after
filling it, you will get data that, hopefully, is so incorrect, that it causes an
immediately visible MFU.

This is very valuable before file reads to insure that you handle the end of file
when you get a partial read successfully. Filling passed in buffers is also a
good check to make sure the passed in buffers are long enough. If a function
returns a string, and one of the parameters is the maximum length of the string,
filling the buffer first will insure bugs if the passed in buffer is too short.

Also, when you free up a buffer, first fill it. This prevents bugs due to
accessing a free'ed buffer which usually holds the old data. This holds not just
for freeing a buffer you allocateated but also for internal cache buffers, data
structures, and so on. Anytime you are through with any kind of memory, fill
it before freeing it.

By filling freed memory, then if you access this memory after the free, you are
guaranteed to get bad values, hopefully causing an obvious MFU. If you don't
fill it, then when you access the memory after it is freed, you will see the bug
only in the rare cases where the memory is reused prior to your post-free
access.

Try several values for DEBUG_FILL_CHAR at different times. In some
circumstances 0 is deadly; in others, it's totally benign. Test your entire
program using 0x00, 0x7E, and 0xFE. I have found 0xFE to be the most
damaging in most cases. I don't use 0xFF because -1 in many cases has a
special, sometimes benign, meaning.

Freeing a structure

The program example below illustrates the use of filling a
buffer.

// Include file contents:
#ifdef DEBUG
#define DEBUG_FILL_CHAR 0xFE
#define DebugMemSet(p,n) memset (p, DEBUG_FILL_CHAR, n)
#else
#define DebugMemSet(p,n)

 37 No Bugs

#endif

// .c file contents
LinkListDelete (elem *p)
{

 // Take p out of the linked list
 (p->next)->prev = p->prev;
 (p->prev)->next = p->next;

 // Fill p
 DebugMemSet (p, sizeof (elem));

 // Add p to free list
 p->next = pFree->next;
 pFree->next = p;
}

The above example can be used not only for memory, but also for disk I/O. If
you delete a record in a database file, filling the deleted record will guarantee
that you get bad data if another record is still pointing to the deleted record. In
short, fill anything that persists after the free/delete function returns.

Before any read, not just from disk but from anywhere (RS-232 port, and so on),
fill the buffer with the ID value. Then, if the read returns with no error but
didn't actually read anything, the buffer will not have it previous contents,
possibly from a previous successful read.

If the read is partially successful (that is, you read the end of a file), the fill
performs a second function. If you assume all reads are fully successful, you
will get bad data. Otherwise, you are usually using the same buffer to perform
all reads, and the remainder of the buffer generally holds what appears to be
legitimate data.

You don't need to do this prior to a MemCpy or other direct memory copying.
However, whenever you expect someone else to fill a buffer for you (DDE,
networks, and so on), fill the buffer first.

Filling Buffers

The program example below illustrates the use of filling a
buffer prior to a read.

38 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

MyRead (int iFile, void *pvBuf, unsigned uNum)
{

 DebugMemSet (pvBuf, uNum);
 return (read (iFile, pvBuf, uNum);
}

I have found it useful to set registers that I use in assembly language modules
to this same ID value. In higher-level languages you generally don't have
scratch global variables (you can, but it's a terrible practice). The idea is to fill
any variable of any type before someone else will set it or after you are done
with it.

NULL pointers

What discussion of eliminating bugs would be complete without the subject of
using NULL pointers. This is one of the few things that the compiler
companies have actually tried to do something about themselves. In any event,
watch for NULL pointer writes.

On the 8086, regardless of memory model, in C you have two NULL pointers;
SS:0 and 0:0. In some cases where DS is different from SS but DS is fixed, you
also have DS:0. For other processors, you might still have more than one
NULL location.

Regardless of the quantity of them, copy the 4 four bytes from each NULL to a
global variable on start-up. Then when the program ends, compare these
values to the values at each NULL location. Write a message to the tester if
they don't match.

Even though most compilers perform this checking for you, do it yourself for
two reasons. First, most of the compilers test only for overwriting SS:0.
Second, you should have a TestNull function to add to the TestAll function.
This allows you to test for NULL overwrites at times other than program exit—
critical to narrowing down when you wrote to NULL.

Keep the following thoughts in mind. First, sometimes the NULL value will
legitimately change. If you set an address on int 0, the NULL 0:0 changes.
Also, some compilers set DS:0 to 0 and then use that pointer for literal strings
that are empty. Therefore, writing to DS:0 can cause some unpredictable
behavior.

 39 No Bugs

Prototyping including CONST

There is a certain type of bug I used to get a lot. I would spend hours tracking
it down. And then I would finally find it. I would have done something like
pass an int when I was supposed to pass a pointer to an int.

I did this so often, that as soon as the compilers started doing prototype
checking (I'm showing my age here), I always prototyped my functions. For a
very small effort you get a very large return on your investment.

C is designed to help you do anything you want. However, it also has the
ability to use function prototypes and perform very strong type checking. Use
prototyping. A good C programmer breaks the rules at times—carefully and
deliberately.

All functions should be fully prototyped. This includes using const whenever
possible on the prototype for function variables. Also, void * should be used
whenever appropriate (such as in malloc, memcpy, and read) when it is
legitimate to pass in, or return any type of data. However, do not use void *
when a function normally accepts only one type (such as strcpy).

Prototyping examples

The program example below illustrates the use of proper
prototyping:

void *malloc (unsigned uLen);
void *memcpy (void *pDest, void const *pSrc);
char *strcpy (char *pDest, char const *pSrc);

All code should compile at the highest warning level with NO warnings or
errors produced. With C's casting capabilities, there is no need for any
warnings. This full prototyping has two advantages. First, if you see a
warning, you know something is wrong (although it might be as simple as
having forgotten to cast something).

Second, this will catch a number of errors that otherwise might not be seen for
some time and that could take days to resolve. Prototyping rarely will show
me where I have made a mistake, but when it does, it generally shows the type
of bug that doesn't normally make itself known till much later, When it is very
difficult to track down.

40 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

While most warnings can be resolved with a cast, that should be your last
response. I once found a bug in someone's code where they passed a long (not
a pointer to a long) where a function wanted a far pointer. Needless to say, this
caused the function to bomb. When asked about casting the long to a pointer,
the programmer replied, "To eliminate the warning message."

In most cases, if you use the void pointer where appropriate in prototyping,
there is virtually no need for casting. Unless its clear to you why you do need
to cast, you are, at a minimum, doing something you don't fully understand.
Writing code you don't understand is a guaranteed way to introduce MFUs
(that's why COBOL programs are so bad).

A blow torch is a valuable and necessary tool for building cars. However, it is
not a recommended tool for repairing a circuit board. Effective use of tools
requires knowing when to use and when not to use something. It's very
important to know when the solution to a warning or error isn't casting but is
instead correcting your code.

CRC Checking

Personally, I have never seen the need for CRC checks. However, a developer I
respect a lot swears by them so I leave it up to you. I am sure there are times it
can pay off.

The first place to use CRC checking is on data structures (especially those
buffering generic data). By performing a CRC check, you gain two additional
checks. First, if there is no way to make a consistence check (the buffer is from
reading a binary file - any values are legit) of the buffer, we can still verify that
the data is good.

Second, if we want to make sure the structure hasn't changed to a different set
of consistent data, the CRC will tell us if its the data set we believe, even if the
data passes our consistency test.

Another useful check is to verify that you didn't write to the code or CONST
segments. If you use Bounds Checker (see the tools chapter) or you are
running under a protected mode operating system (such as a Windows
application in standard or enhanced mode), it will do this for you. However, if
you don't have these options, you can perform a CRC of these segments on

 41 No Bugs

start-up and then compare it in your TestAll function and when the program
exits.

In both cases, this is usually due to a loose pointer. Keep in mind that some
third-party libraries use self-modifying code which would make this test
difficult. However, with the chip pre-fetch queue in the 80286 and beyond,
self-modifying code has become a dangerous practice that is being used less
and less.

Roll your Own

Keep in mind that this chapter is filled with suggestions, not a rigid set of
practices to take as a whole. Some of these will work better for you, some
worse. You want to use those that will pay off for you and not waste your time
with those that won't.

In addition, if you have practices of your own that are not mentioned here,
continue to use them. The trick is to use what works, not what is written
down. These tricks are ones to add to your repotoir, not to replace it.

42 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 5

ASSERT THE WORLD

A couple of years ago, I was writing a piece of code where I was performing
some very complicated actions on a buffer I was walking. I had several
pointers, that had a very specific relationship to each other. If one of these
pointers was off in relation to the others, then I would get major errors.

I spent days on this code, each time I found a bug, tracking down its cause.
Almost every time I would fix one bug, another would get created. Finally, in
desperation, I wrote a function to check the pointers relationship to each other
at the begining of each pass through the loop. If the pointers didn't match, I
printed out the value of every local variable.

Within a couple of hours, I found the remaining bugs and had the function
working. I surrounded my assert code with a #ifdef DEBUG and left it in
there. Subsequent bugs in the code basically identified themselves.

Since then, I have come to use this practice (assertion) virtually everywhere.
Not only does it save you days of tracking down bugs, but it finds bugs you
otherwise wouldn't find. And finally, for the asserts that never find a bug, you
can feel that much more secure about your code - you have parts that you know
are working correctly.

As you go through your code, you have places where you know that a variable
holds a certain value and you have places where you believe that a variable
holds a certain value. And unfortunately, you might have places where you
hope that a variable holds a certain value (major MFU alert). In most cases, the
honest answer is that you believe a variable holds a certain value.

The fact that you don't know is part of programming. If you write a low-level
function, you have no control over the code calling your function. In a
complicated procedure you believe that you understand every possible path
the code can take but you can't know for certain.

 43 No Bugs

Assert to the rescue

To solve this, we make massive use of the assert capability. An assert function
checks a Boolean expression and, if it is true, calls the warning message
function. For example, you may place assert (strlen(pStr) < 16); just before you
copy a string into a 16-byte static buffer. If a string is ever longer than 15 bytes,
the assert macro will print a message listing the file and the line in the source
code that caused the error.

Assert macro

The program example below illustrates the use of a standard
assert.

#ifdef DEBUG
#define assert(b) (b ? printf ("##b in File: %s, Line:
%d\n", __FILE__, __LINE__); :)
#else
#define assert(b)
#endif

Most compilers support two asserts. One only exists if DEBUG is on, and the
other exists even in the final released version. In this case, the first one is
placed everywhere you believe the Boolean value to be FALSE. The second
assert is placed only where you want the retail version of the program to exit if
the Boolean value is TRUE.

This is bad coding—you have left MFUs in your program. There should be no
assert in non-debug code. Under certain conditions, you might want to end
your program. However, you should exit gracefully with a message to the user
that makes sense. How good will you feel about a program that suddenly exits
to DOS with the line internal error @ dave.c, line 253?

This bears repeating because there are numerous commercial programs that
ship with asserts in them. You need to handle ALL error conditions properly.
Exiting to DOS with an incomprehensible message to the user is not acceptable.
Give the user enough information that, if its 2:00 in the morning and they need
to use your program to complete something by 8:00 in the morning, they have
a prayer of figuring out what to do differently so the program will work. (End
of lecture)

44 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

You assume certain things can't happen or must happen at certain places in
your code. Place an assertion in your code that tests for this and prints if the
impossible happens or the certain fails. The best way to place these is to look at
your functions after you have finished coding them and ask yourself what can
go wrong. Usually one or more places in the code will jump out at you. Place
asserts at these spots. While debugging you will also come across bugs that
would have been solved by an assert. Place one there and remember the
situation the next time you are placing asserts.

For example, if you assume multiplying 2 ints will always have a result that is
an int, then assert ((long) i1 * (long) i2) < 0x7FFF);. As you walk through a tree, if
you assume a certain pointer is always good, then assert (pTree != NULL); or
assert (pTree->uID == ID_TREE);. One of the most important assertions is that
you check the ID in the struct when a function is passed, or returns a struct.

Assertions are usually a low-investment, high-return effort. For any given data
structure, you need to write an assertion function. You then write a macro that
will call the function if DEBUG is turned on and will do nothing if DEBUG is
turned off.

Then, anywhere you believe you have a pointer to the structure or a variable
holding the structure, but you aren't 100 percent sure, assert the variable.
Generally the code in an assertion is quite fast, so load up your code with
assertions everywhere. You won't see much of a hit in speed. But when an
assertion fails, you are pointed right at the failure, by module name and line
number.

We break assertions into 2 parts; the code to check a data structure and the
code common to all assertions. We will discuss the common code first. C has
had an assertion macro for years. If false, it will print out the false statement,
and the module and line number at which it occurred. We will get a little bit
more sophisticated than that.

Assert a String

The program example below illustrates the use of a string
assert.

#ifdef DEBUG

 45 No Bugs

#define DebugAssertStr(pStr) CheckStr (pStr, __FILE__,
__LINE__);
#else
#define DebugAssertStr(pStr)
#endif

Each structure has its own Check function. You can use an assert macro, but
then all the checking occurs in-line. This not only leads to a bigger program,
but it also makes complicated checking impossible.

If there is a problem in the Check function, the Check function calls a standard
AssertPrintf. This is a normal printf but also passes in the __FILE__ and
__LINE__ information. This way all assert printfs begin the same way. For
example, in Windows, you use a MessageBox and the caption can then be
Assert - file: dave.c, line: 23. The rest of the printf can be any formatted string
the Check function wants to display. The Check function should say what it
didn't like but don't worry about making it pretty.

Ok, we can print an assertion failure, but how do we know if we actually do
have a problem? The first part of the Check function is the code to check the
data structure. Usually this can be divided into two parts:

• Are you truly pointing at the data structure you think you are pointing at?

• Is the data structure holding valid values? Are the values consistent with
each other?

 Sometimes you can't truly tell whether you are pointing at the data structure,
so all you can do is see whether it holds valid data.

So you see how we can check the big, complicated structures in your program.
But what about simple data? Most code has a lot more ints and strings than
structs. All you need to do is take a look at what you are using the variable for.
To demonstrate, in the following section we will create an assert for a bool, int,
and string.

AssertBool

You can assert a Boolean value very simply. The value of every Boolean
should be either TRUE or FALSE. TRUE is defined as a non-zero value, but in
virtually every program written it has a specific value, usually 1 or -1. If
Booleans are bytes, then a Boolean with a random value has only a 1/128

46 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

chance of being TRUE or FALSE. If a Boolean is an integer, the odds of
randomly holding a legit value are even worse.

So CheckBool can check for the values TRUE and FALSE. A Boolean with a
random value will almost always fail this test. Although CheckBool isn't
perfect, it does provide a lot of help.

Assert a Boolean

The program example below illustrates the use of asserting a
boolean.

BOOL CheckBool (char *pFile, int iLine, BOOL bVal)
{

 if ((bVal != TRUE) && (bVal != FALSE))
 {
 AssertPrintf (pFile, iLine, "BOOL = %d", bVal);
 return (TRUE);
 }
 return (FALSE);
}

AssertInt

An integer can hold any value. However, our stack routine (covered in
Chapter 7) will be setting all ints to 0xFEFE. It's probably pretty rare that an int
will actually hold this value. You could set all uninitialized global ints to this
value too and catch any cases where you use an int before initializing it. For
the rare case where 0xFEFE is a possible value, just don't assert the int.

Most ints will hold a value within a range. If you are keeping a percentage
count (like the install bars in most setup programs), the variable should be ≥ 0
and ≤ 100. (It should also increase on each change, but that rule is specific to a
count.) Therefore, you could add a minimum and maximum to the assert. If
both are 0, then don't check the range.

Assert an Integer

The program example below illustrates the use of asserting an
int.

 47 No Bugs

BOOL CheckInt (char *pFile, int iLine, int iVal, int iMin, int
iMax)
{
 // See whether it has been initialized
 if (iVal == DEBUG_FILL_WORD)
 {
 AssertPrintf (pFile, iLine, "iVal == DEBUG_FILL_WORD");
 return (TRUE);
 }

 // See whether you need to check min/max
 // If both are 0, don't check them
 if ((! iMin) && (! iMax))
 return (FALSE);

 // Check against min/max
 if ((iMin <= iVal) && (iVal <= iMax))
 return (FALSE);
 // Nope - tell the user
 AssertPrintf (pFile, iLine, "int should be: %d <= %d <= %d",
iMin, iVal, iMax);
 return (TRUE);
}

The above will work for most basic uses of an int. If you use an int is to index
into a dynamically allocated array, use the array size as the max when asserting
it. No rule says the max has to be a constant.

The above will give you a method of performing boundary checking on an
array, but that isn't the important point. The important point is that you can
assert something as simple as an int.

AssertStr

Now let's look at a string. Strings are generally either literals (in which case
you do know their contents and don't need an assert) or are placed in scratch
buffers (some of which are malloced). You know a couple of things about a
string. First of all, if it is a text string, all the characters are in the range 0x20 -
0xFE for the English character set. (If you are NLS aware, there is still a subset
of the full character set that will be allowed in most strings. For DBCS you can
also test to be sure all lead bytes have a legitimate second byte.) For this

48 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

assertion, you also allow the \n character. Any text string in English should
pass this assert.

In many cases you also know the maximum length of the buffer. If you are
storing the string in a global or local array, you know the size of the array. If
you allocateated a buffer, you can get the size of the allocateated buffer. Use
the following rules for the length of the buffer.

• If the length is the size of the buffer—the longest string is 1 byte shorter.

• If the length is -1, it's a malloced pointer, and you ask the heap manager for
the length of the buffer.

• If the length is 0, you don't know the maximum length and don't test for it.

If you know the size of the buffer, you can also fill the unused space after the
termination \0 with the fill byte (normally 0xFE). Then, if the termination \0 is
overwritten or you skip past it in our logic, you will be reading some very
abnormal characters. To assert this however, you must also initialize all strings
this way too.

Again, this gives us a powerful tool to verify a string. Although it will not
differentiate between the right and wrong string, it will differentiate between a
pointer to a string and a pointer to most data structures.

Assert a structure

For structures our assert falls into two parts. The first part is to determine if we
are pointing at a structure. To check this, if DEBUG is defined, we place an
unsigned int (I name it uID) as the last element of every struct of importance.

Then, whenever you have initialized the struct, set uID to a specific ID value
(use a different value for each struct). When you are finished with the
structure, set uID to a specific done value (this can be the same for all of the
structs). In C++ this is trivial; set uID to the struct specific ID value in the
constructor and set it to the "done" value in the destructor.

If you want to get real fancy, you can also put a 32-bit ID at the beginning of
each structure. For its ID, use a value that will be the ASCII values for a 4-byte
abbreviation of the structure (Window = "Win "). That way, when you db p a
pointer in your debugger, you know what type of structure it was set up as.

 49 No Bugs

Whenever you assert a struct with an ID, check the ID. If it's good, continue. If
it is the "done" value, you are accessing the struct after you were through with
it. If it is any other value, you have garbage data. In either of these bad cases,
tell the tester the location of the bad data.

Structure IDs

The program example below illustrates the use of a structure ID.

// include file:
#define ID_DONE 0x1234
#define ID_CHARWIN 0x1357
typedef struct S_CHARWIN
 {
 int iRow;
 int iCol;
 int iNr;
 int iNc;
#ifdef DEBUG
 unsigned uId;
#endif
 } CHARWIN;

// .c file
CHARWIN *CreateWin (CHARWIN *pWin)
{

#ifdef DEBUG
 pWin->uId = ID_CHARWIN;
#endif
 ...

 AssertWin (pWin);
 return (pWin);
}

DeleteWin (CHARWIN *pWin)
{

#ifdef DEBUG
 pWin->uId = ID_DONE;
#endif
 ...
}

50 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Once you have checked the uID, you know whether you are pointing at your
structure. If the structure is part of a global list or array of structures, you
might want to verify that this structure is in the list. This can be a time-
consuming operation, so you might want to have a separate call to Assert the
global list/array and only call that Assert when first getting the pointer or after
adding a structure.

(You also need to be careful asserting the list when you assert a structure in the
list. Normally the assertion of the list will assert each structure in the list. If
they keep calling each other, you will run out of stack space very quickly.)

You then need to verify the contents of the structure. If the structure is holding
inconsistent data, you are in as much trouble as if you were pointing to the
wrong memory location. Generally you will find it easy to verify part of the
data and very difficult to verify the rest. If it's easy to code and runs fast—
verify it. If it's code that will be slow, don't verify it unless its something that is
likely to trip you up. If the coding is complicated, again, don't code it unless
you think it might cause you problems later.

Assert a Structure

The program example below illustrates the use of checking a
structure.

// include file:
#ifdef DEBUG
#define AssertWin(p) CheckWin (__FILE__, __LINE__, CHARWIN *p)
#else
#define AssertWin(p)
#endif

...

#ifdef DEBUG
BOOL CheckWin (char const *pFile, int iLine, CHARWIN *pWin)
{

 // Are you pointing at the structure?
 if (pWin->uId == ID_DONE)
 AssertPrintf (pFile,iLine, "Accessed Window after deleted");
 else

 51 No Bugs

 if (pWin->uId != ID_CHARWIN)
 AssertPrintf (pFile, iLine, "Bad Window Pointer");
 if (pWin->uId != ID_CHARWIN)
 return (TRUE);

 // Are the values ok?
 if (pWin->iRow >= pWin->iNr)
 {
 AssertPrintf (pFile, iLine, "iRow = %d, iNr = %d", pWin-
>iRow, pWin->iNr);
 return (TRUE);
 }

 ...

 return (FALSE);
}
#endif

An important trick in writing Asserts is to not do too much. If you avoid 100
tests among various asserts and it turns out later that two of them would have
found bugs for you, you are ahead of the game. The main thing you are trying
to find is whether you are truly pointing at the structure, and the uID element
does that for you. The second thing is whether the structure contents are
consistent, and that is usually an all-or-nothing proposition.

Finally, if you sometimes have the data in a subtlety inconsistent state, if you
thought to test for it, you probably already coded for it. A good test is to think
through everything you could assert. This will many times remind you of
some coding you need to do in the program itself. Then look at each element
you are going to test. If the code that sets up the structure is simple and
straightforward, don't worry about it. If the code that acts on it is spread all
over the place—check it.

Asserting structures is one of the most powerful tools at your command. It's
more important to write a decent assert function for every structure than to
write an awesome assert function for 90 percent of the structures. And most
important, assert the structure throughout your code.

52 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Parameter validation

Parameter validation is a type of assertion. On entry to each function, you
assert each parameter you were passed. In this manner, you insure that all of
the passed in parameters are valid.

If you are writing code that third parties will be calling, you should strongly
consider leaving parameter validation in your final product. This was one of
the big advantages of Windows 3.1 over Windows 3.0.

Perform full parameter testing at the beginning and end of each function. You
do not need to test static functions that are called only from one or two places
in one other function. However, for any function that can be called from

 53 No Bugs

anywhere, this is essential. Start at the very low-level functions. If you have a
NULL pointer, sooner or later you will probably memcpy or strcpy to it.

Parameter checking can be more extensive than first glance might tell you. You
obviously can assert structs and check pointers for a NULL. However, you can
also check pointers against parameters passing their length. For instance, on a
PC will the memcpy cause either of the pointers to wrap? In Windows is the
pointer a legitimate selector and is its limit as great as the length that will be
accessed?

If a parameter has a range (for example, a drive identifier), then check the
parameter against its possible legitimate values. If you are accessing malloced
memory, then the pointer should be in the heap. If you are freeing or
reallocing memory, it should be a pointer to an allocated area in the heap.

Be careful not to overcheck. It is totally legitimate to call free on a NULL
pointer. You do not want warning messages popping up for function calls that
you consider legitimate. You also do not want to make your code bigger to
avoid calling a function in a way that is benign but creates a warning message.
The checking should cover all errors and no legitimate calls.

Even if a parameter will almost never legitimately have a certain value, you
should not check for it; if you get warnings when your program is okay, you
will begin to ignore the warnings—including legitimate ones. (Remember the
story of the boy who cried wolf once too often?)

Error checking should always continue into the body of the function. The
regular part of the function may then elect to return if some parameters are
bad. If you fully implement parameter checking, you will be amazed at the
number of bugs that you find instantly (as opposed to after hours or days of
debugging).

memcpy.c

The program example below illustrates the use of parameter
validation.

MemCpy (void *pMemDest, void *pMemSrc, unsigned uNum)
{

#if DEBUG > 0

54 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // Note: AssertPtr checks to be sure p to p+num-1 is data
 // that belongs to us. And if its malloced data - that it is
 // all within one malloced block of memory.
 if ((AssertPtr (pMemDest, uNum)) || (AssertPtr (pMemSrc,
uNum)) || (! pMemDest)
 DebugMessageBox ("ERROR: memcpy (%p,%p,%x), pMemDest,
pMemSrc, uNum);
#endif

 // Even in non-debug mode we check for copying to NULL
 if (! pMemDest)
 return (NULL);

 // Call the function
 return (memcpy (pMemDest, pMemSrc, uNum));
}

Assert everything

You can introduce several types of bugs to your code. At the easiest end are
the bugs that stop the compiler from compiling—you are guaranteed to have
them fixed before the program runs. (Oh, if only all bugs fixes were this self
enforcing.)

 55 No Bugs

At the other end are the do-what-I-say-not-what-I-mean bugs. Here, logic errors
are hard to find because the program is properly doing exactly what you told it
to do. This is where asserts shine. Ideally, your asserts assert what you mean
in addition to what you said.

To handle logic errors, you need to assert everywhere. All return values from a
function should be asserted just before return. If you don't know whether a
function asserts its return values, assert them after calling the function. All
functions need to assert all parameters they are passed. If you don't know
whether the function you are calling asserts, assert just before calling the
function.

When you have complicated logic, especially in large loops (while or for loops
with a lot of code in them), place asserts at the major logic breaks in the loop
(including the start of the loop). The asserts at this point should assert
everything possible. Do not assert only your pointers, individually; assert the
relationship between them. For example, if a loop will advance a pointer by 2
bytes in a string each iteration, be sure that there are at least 2 more characters
in the string.

It is critical that the asserts make you confident that you are working with the
correct data. You still have to verify that you are performing the correct
operations on the data, but you shouldn't have to worry if the data itself is
correct. And even more importantly, you shouldn't have to worry if your
different variables are consistent among themselves (for example, if p is
supposed to be equal to &a[i], assert p == &a[i]).

If you make liberal use of asserts, while you are first writing your code, you
will be pleasently surprised at how much easier they make your coding. The
asserts will point you right at a large number of the bugs you have to fix to get
your code first running - bugs that previously would take days to find all of
them. Generally, writing asserts will pay for itself within a day or two.

56 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 6

DEBUG PRINTFS

We've now written a number of routines to help us find and eliminate MFUs.
However, we need some way for this code to communicate with us. However,
we don't want our debug output getting mixed up in our regular output.
Therefore, we need debug functions for displaying information.

An effective set of debug printf's make the difference between the debug
information helping you debug or getting in your way. This chapter shows
how to display the debug information without its interfering with the normal
displaying of data in the program.

You need debug printfs for two reasons. First, for Message Boxes that tell the
user of an error and then wait for the user to press a key before continuing.
Generally, when an assertion or parameter check fails, a Message Box should
be used so the user stops at the error.

Second, for informational messages. These messages tell you what the
program is presently doing, and the program should continue, without user
intervention, after printing each message. Listing the Windows message
presently being processed is a good example of an informational message.

The debug printf is an important tool in the process of eliminating bugs in your
code. When something is wrong, you should display the error as directly as
possible. A Message Box that pops up in front of the user fulfills this need
nicely. Creating a function that makes this pop-up box easy to format and call
is important so that it is used wherever and whenever it should be.

However, just as important is a clean and easy way to list the informational
debug messages. If properly implemented, these messages will allow you to
compare what the program is doing internally with what the monitor says it is
doing. If the debug printfs say you are editing one document when your
program is showing another, something is probably wrong.

 57 No Bugs

Rather than writing debug printfs to a serial terminal, the program below
writes to the monochrome monitor, which is divided into a number of
windows. Because the monitor is divided into windows, printfs to one
windows will not scroll valuable information in another window offscreen.

Conditional debug printfs print only when turned on. They can be turned on
and off either with compile-time defines or run-time variables (covered in
chapter 3). Using defines is a lot simpler but requires you to rebuild a program
to turn some debug printfs on or off. Using debug variables is a little more
complicated, but they allow you to turn debugs on and off without rebuilding
the program.

This chapter discusses these three processes, debug pop-up Message Boxes,
debug printf's to a second monitor, and conditional debug printf's. Virtually all
the code for these functions is listed in the appendix. There was no way to
break the code into small pieces. So rather than have a giant chunk of code in
the middle of the book, I moved this code to the appendix.

Message Box

Even under Windows, a good Message Box function requires some coding. In
the case of DOS, it requires quite a bit of work. You use two Message Box
functions; DebugMessageBox and DebugMessageRes. DebugMessageBox has
the same parameters as printf. DebugMessageRes has a resource number
instead of a format string.

This resource number moves the format string out of the default data segment.
If you make extensive use of assertions and parameter checking (as you
should), you could find the format strings for all the calls to DebugMessageBox
consuming a significant percentage of the default data segment, possible
causing you to run out of room. Because the job of the debugging code is to fix
problems, not cause them, you should store the strings as resources rather than
as data.

Because DOS, unlike Windows, does not have resources, the strings are stored
in a far data segment along with their resource number. When
DebugMessageRes is called, the string is copied from the far data segment into
a buffer, and DebugMessageBox is called. This way, the strings are still not in
the default data segment.

58 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

DOS has two types of Message Boxes. The first simply performs printfs to the
screen. The second pops up a box on the screen and after the user presses a
key, will disappear, with what was under the box placed back on the screen.
The pop-up box will force the screen into 80 x 25 mode before displaying the
box and place the screen back into its previous mode when done. Therefore,
even if your program is not in character mode, if it uses the ROM BIOS to do its
screen mode switching, the pop-up box should work fine.

When the box comes up, you may press only <CR> or ESC. If you press <CR>,
the program will continue. If you press ESC, the program will exit to DOS,
leaving the Message Box on the screen. ESC is useful if you run into an error
that makes you want to bail out—where continuing might result in
reformatting your hard disk, for example. It has the added benefit of leaving
the debug message on the screen.

Windows uses the Windows MessageBox function. It is brought up in a
TASKMODAL state so your program is stopped but you can still use other
programs on the system. Because exiting a Windows app causes numerous
messages to be handled, pressing ESC in Windows does not exit the program.
Instead, it turns off the DebugMessageBox processing so subsequent messages
are not displayed.

This demonstrates a difference in functionality between DOS and Windows. I
have found, however, that under Windows it is common for one error to cause
50 to 100 subsequent error messages. Yet I might want to continue testing after
the first error occurs without having to press <CR> 100 times. Under DOS this
cascading of errors is a lot less common. Its part of the nature of the differences
in the environments.

Debug messages can be printed one other way. Using the DebugPrintf
described later in this chapter, the debug message is displayed in Window 3 of
the debug monitor and then waits for a key press. Using this system, the
program display is not affected at all.

 59 No Bugs

60 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Debug printf

When you are writing a program, even when you are not looking for bugs, its
is very useful at times to be able to print out information on the internal state of
the system. However, you do not want to print this on your main screen as it
will interfere with the program you are running.

However, most color video cards can co-exist with a monochrome card also in
your system. This second monitor can then be used to write to. The debug
printf's will then not interfere with the main screen display. Also, sine the
printf's go directly to video memory, it doesn't affect DOS.

We also divide the monitor into several different fixed size/location windows.
Then write a printf in which the first parameter is an int that states which
window to write to. You then can write information to the second monitor.

The purpose of the multiple windows is to protect important information from
being scrolled off the screen by subsequent unimportant information. In
Windows, I have one window that lists messages sent to my WndProcs and
one just for debug/error messages. This leaves me three windows for printing
messages of various importance.

I rarely use Code View because of this second screen. Generally, all of the
information I need to know is listed on the second monitor. I have also used

 61 No Bugs

this method in writing DOS programs. The main drawback is that when the
debugger comes up, it overwrites the information on the second screen.

The enclosed code allows any number of windows to be defined at compile
time. The MDA (Monochrome Display Adapter) code is all in mda.c (in
Appendix B), so it would be very easy to write a driver for the debug printfs to
go to a serial terminal or other monitor.

Along with writing to multiple windows, a number of other functions are
available. Whenever the MDA is being written to, pressing SCROLL LOCK
(NUM LOCK under Windows because SCROLL LOCK is not updated by
Windows at interrupt time) will cause the printf to pause. At that point, using
the various shift keys, you can stop certain debug functions.

By pressing the right SHIFT key, you can also have the MDA dumped to the
printer when the printf is paused. When the key is pressed, the contents of the
monitor are dumped to LPT1 (with the full IBM character set or just ASCII).

The call DebugPause will pause until you turn SCROLL LOCK (NUM LOCK
under Windows) on and then off. This gives you an easy way to have the
program stop at a given point. This call is used by DebugMessageBox when it
prints to Window 3.

I divide the MDA into five windows (0 through 4). Under Windows, I use
Window 4 to display the messages being sent to my application. Window 3 is
for error messages. (I prefer this to using MessageBox.) Window 2, due to its
small size, displays the program's basic state. Window 1 lists important
information, and I try to keep this to a minimum so that it's rare that something
has scrolled off of this screen, due to subsequent printfs, while it is still
pertinent. Window 0 is for all my other debug printfs.

When set up properly, including DebugPrintf's at the proper places in your
code, it's amazing how valuable this arrangement becomes. When you
discover something is wrong, you can generally determine what is wrong by
looking at the contents of the MDA .

Even more important, watching the contents of the MDA while running the
program can alert you to errors that you otherwise might miss. Essentially, the
MDA allows you to see the program operating internally in real time.

62 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Conditional printfs

Once you have added an assert, DebugPrintf, and the rest of the above features
to your program, don't remove it. You never know when you might need to
use it again—plus, removing it is extra work. Instead, use a method to turn the
debug code on and off.

You can accomplish this in either of two ways. You can use #ifs to decide
which debug code to even compile, or you can use debug variables to
determine, at run time, which debug code to execute.

Generally, if you are going to be recompiling anyway when you need to change
which debugs are on and you have a very simple set of rules for which debug
code you want to execute, use #if. If life is more complicated, use variables.
Both methods are laid out below.

Conditional defines
Generally, when I have had code where I used conditional defines, I defined
two values, DEBUG and VERBOSE. DEBUG set the amount of error checking
I wanted to perform, and VERBOSE set the amount of information I wanted
sent to the MDA.

 63 No Bugs

Error checking takes some time. In many cases, checking is as simple as seeing
whether a pointer is NULL or whether a structure's ID is correct. Neither check
takes much time or space.

On the other hand, performing a CRC of all the buffers in a cache is very
expensive in terms of time—especially if the function that includes the check is
called often. Therefore, as the value of DEBUG is increased, the program slows
down proportionally. I suggest the following values:
 DEBUG == 0 No debugging
 DEBUG == 1 Left in beta release
 DEBUG == 2 Fast checking
 DEBUG == 3 Moderate checking
 DEBUG == 4 Slow checking
 DEBUG == 5 Extremely slow checking

For your first beta release, you would then compile with -DDEBUG=1. In
return for a slight performance slowdown, your assertions, parameter checks,
etc. will be checked by your beta testers.

This does not mean that you would even use all of these values for most code.
In most debugging code, the checking will be fast, so you perform the checking
if DEBUG > 0. If you use this method, be sure that if DEBUG == 0, none of the
debugging code will be compiled.

Separate from testing is the issue of how much information you want sent to
the MDA. If you have a problem with one module, you do not want the
DebugPrintfs from it to be buried in DebugPrintfs from other modules that are
working properly. The VERBOSE define is used to determine which
DebugPrintfs to use. I suggest the following values:
 VERBOSE == 0 No DebugPrintfs
 VERBOSE == 1 Left in beta release
 VERBOSE == 2 No printfs in normal code path
 VERBOSE == 3 Very basic printfs
 VERBOSE == 4 Moderate printfs
 VERBOSE == 5 Verbose printfs

To implement this most easily, use the following code. Although you could
use the value of VERBOSE as a parameter in a single VerbosePrintf, the method
demonstrated below totally eliminates the code (including static data for literal
strings) if VERBOSE isn't set high enough for the call.

64 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

verbose.h

The program example below illustrates the use of VERBOSE.

#if VERBOSE > 0
#define v1Printf DebugPrintf
#endif
#if VERBOSE > 1
#define v2Printf DebugPrintf
#endif
#if VERBOSE > 2
#define v3Printf DebugPrintf
#endif
#if VERBOSE > 3
#define v4Printf DebugPrintf
#endif
#if VERBOSE > 4
#define v5Printf DebugPrintf
#endif

By defining merely the function name, you don't need to worry about the
variable number of parameters going across. Instead of typing DebugPrintf,
you type v#Printf. Then, by setting VERBOSE, you determine which printfs
are included in the compile.

Using variables
The other alternative is to use variables. This method gives you some
advantages.

• You can change the variables at run-time.

• You can run with different testing without first recompiling the program.

• You can turn levels of debugging on and off while the program is running
with your debugger.

• You can turn types of debugging on and off rather than being limited to a
level.

The best method I have seen is simple yet powerful. Begin with two variables,
BugTyp and BugLev. BugTyp is a byte that defines the part of the program.
Each part of the program has its own separate number. An example would be
having a different number for each basic function available from a menu in a
program.

 65 No Bugs

BugLev is an array of bitmaps. For each BugTyp value, there is a separate
BugLev bitmap determining what debugging to turn on. The values in the
bitmap are the same for each BugLev. If bit 0 means turn on parameter
checking, then that should work regardless of BugTyp value.

To determine whether you should perform a debug check, you use the value of
BugTyp for your function, index BugLev with BugTyp, and check the value of
BugTyp against the bit that signifies the check should be performed.

bugcheck.h

The program example below illustrates the use of BugTyp and
BugLev.

extern byte BugLev[MAX_BUG_TYP];
#define BUG_LEV_FATAL 0x01
#define BUG_LEV_ERROR 0x02
#define BUG_LEV_INIT 0x04
#define BUG_LEV_UNUSUAL 0x08
#define BUG_LEV_BASIC 0x10
#define BUG_LEV_MODERATE 0x20
#define BUG_LEV_VERBOSE 0x40
#define BUG_LEV_MISC 0x80
#define IfDebug(Typ,Lev) (BugLev[Typ] & Lev)

You would normally initialize BugLev to 0x03 or 0x0F for each section of your
program. However, you could then turn various checking on or off. The
macro IfDebug will return TRUE if you should perform debug checking for a
given value of BugTyp and a given BUG_LEV_* bit.

You should almost never remove a DebugPrintf or other debug checking,
instead, you should set the initial value of BugLev for that BugTyp so that
unneeded debug checking and printfs aren't executed. You never know when
you might need a specific check or printf again.

Also, be sure you include any code inside #if DEBUG > 0 so that the code
doesn't exist if debugs are turned off.

Debug check

The program example below illustrates the use of IfDebug.

66 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

#if DEBUG > 0
 if (IfDebug (DEBUG_SEARCH, BUG_LEV_ERROR))
 AssertSearchStr (pSrchStr);
#endif

Debug Printf

DebugMessageBox (BYTE bBugTyp, BYTE bBugLev, int iWin, BYTE
const *psFrmt, ...)
{

 if (! IfDebug (bBugTyp, bBugLev))
 return (0);

 ...

}

 67 No Bugs

Chapter 7

WATCHING THE STACK

Virtually everyone has written a program where they ran out of stack space.
How do most of us tell? The way I used to do it is if I started getting weird
errors, where local variables or return addresses were suddenly overwritten, I
would increase the stack. If the problem went away, I would then consider it
solved.

I got tired of using this guess & hope approach to setting the stack size. This
chapter presents a way to determine what is actually needed. This allows you
to set a size that will work on systems with TSRs that use more of your stack
than your own system. At the same time, you do not waste memory needed
elsewhere by having a stack bigger than you need.

An allied problem is using unitialized local variables. All unitialized global
variables are set to 0 in c, so in a sense they are initialized. However, local
variables start out with random values in them. This can make it extremely
difficult to repeat bugs based on this problem.

This chapter includes a method to initialize all local variables in debug mode.
Then, if your code is using a local variable before setting its value, the bug you
get will be repeatable.

While the ideas here should work for any stack based processor, this type of
code is very compiler specific. The code shown here is for Microsoft C 7. An
example for Borland C++ 3 is in the appendix.

Stack Space

How much stack space does your program use? This is one of the most critical
questions facing a program, yet one of the least answered. If your program has
too small a stack, it will "blow up" at random times, causing various problems.
If the stack is too large, you do not get stack problems, but you restrict memory

68 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

that could have been put to other uses. That 1K or 2K extra stack you never use
(sometimes 4K or 8K) can make a big difference when memory gets tight (ie,
malloc fails).

So how is the stack size determined for most programs? In most cases, a
developer starts out with the default size. If an error results, one the developer
attributes to stack overflow, she or he increases the stack size by an arbitrary
amount. Think about it: In the last program you shipped, how much of the
stack is utilized?

Stack size is critical not only for your own program. When a hardware
interrupt occurs, the interrupt handler will use your stack. Many TSRs do also.
You generally should have a stack big enough that you never use the last 512
bytes of it. This gives you some leeway to run on systems with BIOSes or TSRs
that use more stack than your system. 512 bytes is a safe number because DOS
has a small stack (256 bytes), and if a TSR uses more than 256 bytes, then the
TSR will probably crash DOS.

For other than simple, sequential programs, there is no way to measure stack
usage under every circumstance. However, you can easily measure stack
usage each time you run the program. By watching the usage under various
circumstances, you can get an idea of the overall usage.

You can also check the stack every time you enter a function to see whether
enough stack remains. If space gets tight, you can use a DebugMessageBox to
warn that you are out of stack. With the two tools described here, you can
insure that your stack is not too big, not too small, but just right (sortof like
Goldilocks & the Three Bears).

The stack tools are very compiler specific. Each compiler I know of has a
variable whose value or location allows you to determine the beginning and
end of the stack. Each also has a call that can be at the beginning of each
function to check and see whether enough stack remains for the local variables
in that function. The code below works with Microsoft C 7.

We perform this testing with three simple tools. First, when a program starts,
we make a call that will fill the unused stack with a specific value. Fill from
SS:SP to the base of the stack (the stack grows downward). By definition, it
must be safe to fill from SS:SP downward because SS:SP is used by hardware
interrupts.

 69 No Bugs

stckfill.c

The program example below illustrates filling the unused part of
the stack.

extern unsigned end;

void StackFill (void)
{
unsigned uLen;
BYTE *pStck;

 pStck = (BYTE *) &end;
 uLen = OFF (&uLen) - OFF (pStck) - 256;
 memset (pStck, '$', uLen);
}

When the program ends, we make a call to a second function that then starts at
the base of the stack and moves up until it finds a value other than the fill
value. This is the size of the unused stack. It then prints the total stack size: the
amount used and the amount unused.

stckused.c

The program example below illustrates determining the stack
usuage.

extern unsigned end, _atopsp;

void StackUsed (void)
{
unsigned uLen, uStckLen;
BYTE *pStck;

 pStck = (BYTE *) &end;
 uStckLen = _atopsp - OFF (pStck);
 for (uLen=0; uLen<uStckLen; uLen++, pStck++)
 if (*pStck != '$')
 break;
 uLen -= 512;

 printf ("Stack size:%d, Unused:%d, Needed:%d\n",
 uStckLen, uLen, uStckLen-uLen);
}

70 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Keep a record of the maximum amount used over time. Add 512 bytes to the
maximum used and you have the optimum stack size for your program. Keep
in mind that debugging code might increase the stack requirements, so do your
final tuning with the other debug code not compiled.

Uninitialized local variables are another major stack-related problem. They can
be very difficult to find. In many cases, you won't even see the problem except
in special circumstances. In other cases, the bug will appear in random places
(for example, writing to where an unitialized pointer points), making it very
difficult to track down.

The call each compiler can place at the beginning of each function knows
exactly what part of the stack is being allocated for local variables for that
function. This function can then be used to initialize all the local variables of a
function to a set value.

This makes it a lot easier to find unitialized local variable bugs in two ways.
First, the bug will be totally repeatable. Second, we use a value that hopefully
will cause a very noticeable error.

The below code is pulled from chkstk.asm in the Microsoft C version 7 startup
code. It is called on entry to each function with the number of bytes needed for
local variables in AX. On exit, it is expected to have adjusted SP to make room
for the local variables, with SP pointing to the base of the local variables'
memory.

chkstk.asm

The program example below illustrates the use of chkstk.asm.

STACK_FILL EQU 0FEh

DGROUP GROUP _DATA

_DATA SEGMENT public 'DATA'
assume ss: DGROUP
 public STKHQQ

 extrn _end :word ; stack bottom
 STACK_BASE EQU offset DGROUP:_end + 512
 STKHQQ dw STACK_BASE

 71 No Bugs

 Level db 0
 OverFlowMsg db "Out of Stack: %d bytes over", 0
_DATA ENDS

_TEXT SEGMENT public 'CODE'
assume cs:_TEXT
assume ss: DGROUP
 extrn _DebugMessageBox :near

public __chkstk, __aNchkstk
__chkstk proc near
__aNchkstk:

 pop dx
 mov bx, sp ; bx = current SP
 sub bx, ax ; bx = new position
 jc cs10 ; Error - out of memory

 cmp bx, STACK_BASE ; SP - AX : STKHQQ
 ; (for heap/stack)
 jb cs10 ; Error - out of memory

cs20: mov sp, bx ; Set new stack pointer

 push di ; We're okay - fill the stack
with
 push es ; the fill byte
 push ss
 pop es
 mov di, bx
 mov cx, ax
 mov al, STACK_FILL
 rep stosb
 pop es
 pop di

 jmp dx ; Return to calling program

 ; You are out of stack. You print a message and then
 ; exit. You should not continue because IRQs can
 ; totally mess you up if you don't have enough stack.
You can
 ; use DOS to write to the screen because you have not
 ; taken the extra stack yet. You should be okay.

72 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 ; Print Error Message including function called from
 ; Because you use the stack to print our warning you
have
 ; to be careful you aren't reentered here.

cs10: cmp Level, 0
 jne cs20 ; Reentered
 inc Level
 sub bx, STACK_BASE
 neg bx
 push bx
 mov ax, offset DGROUP:OverflowMsg
 push ax
 call _DebugMessageBox
 add sp, 6

 int 3 ; Pop up the debugger
 mov ax, 4CFFh
 int 21h ; Exit the program

__chkstk endp

_TEXT ENDS
 end

Be very sure that you remove this code before shipping a final product.
Making a call every time you enter any function seriously slows performance.
And don't use this function to initialize all local variables to 0 in your retail
release. It might seem an easier solution than finding a bug caused by
unitialized variables, but you never know what else that bug might be doing.

 73 No Bugs

Chapter 8

WATCHING THE HEAP

We now come to the infamous heap. This seems to be the root of the most
common bugs in c. Even the loose pointer bugs are generally due to pointers
that, at least in theory, are supposed to be pointing to memory in the heap.
Fortunately, there are a number of tricks, listed in this chapter, that we can use
to make the heap virtually bulletproof.

Most programmers have—usually more than once—created a bug by
overwriting the heap. Other serious problems include passing a bad value for
a malloc'ed pointer, using a pointer after it has been free'ed, and leaving
memory allocated that is no longer needed which will quickly exhaust your
heap.

This chapter will teach you how to watch for overwriting the end (or begining)
of alloced memory. The following code runs in two modes. The first, debug
mode, will cause memory allocations to take longer and use up more space.
The second, for final release, adds no overhead to memory allocation—neither
time nor space. Use the debug mode until you have eliminated any heap
problems, and then switch to non-debug mode.

The concepts behind the code

The code implements four simple concepts.

1. It places special words before and after all malloced memory. If you
overwrite or underwrite malloced memory, the value of these special
words will change, and the next time you check the special words, you will
discover the illegal access.

2. It keeps a doubly linked list of the allocations. Every malloc is entered into
the list, and every free is removed. This list makes it possible to walk the
linked list at any time to check or dump all malloced memory.

74 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

3. It stores the location (source module filename and line number) of the call
that initially malloced or reallocated the heap memory. All of the malloc
calls that affect the heap (malloc, realloc, free, and so on) pass in the name
of the file they are called from and the line number in the file. The filename
and line number are then stored with the malloced memory that allocated
it. Therefore, when a specific malloced entry in the heap is displayed, it is
listed with the location of the call that created, resized, or freed it. This
makes it very easy to determine where in your code the listed allocateed
memory was malloced, reallocated, and freed.

4. In the beginning of every malloc call, the function walks the heap and
checks for overwritten or corrupted memory. Because these checks are
performed often, you generally know within 10 or 20 lines of when your
dynamic memory is overwritten or corrupted. This usually makes
debugging relatively simple.

Some details

The functions AllocCheck, AllocList, and AllocDone exist only in the debug
mode. Their use makes no sense in non-debug mode because the debugging
information does not exist in that mode.

In non-debug mode I have changed the meaning of some of the functions.
Alloc always returns 0 initialized memory. If you don't wish this to happen, be
sure the debug version fills an alloc with ALLOC_CHK3. Realloc will perfomr
a malloc if you pass in a NULL pointer. It also incorporates expand and
NODISCARD into the same function.

Because the non-debug code is totally different code, you need to test your
program with the non-debug code as well as with the debug code. In the non-
debug code I have left the extra 2 bytes on the end of each allocation, although
they are initialized to 0 instead. This is an attempt to keep problems caused by
switching between debug and non-debug modes to a minimum.

Allocate some memory

Every time memory is malloced from the heap, more than the requested
memory is malloced. The actual memory malloced has a copy of the ALLOC
struct at the beginning, followed by the number of bytes requested, followed
by two more bytes. The pointer returned points to the memory directly

 75 No Bugs

following the ALLOC struct so that the program doesn't see the additional
memory actually malloced from the heap.

The ALLOC struct holds several pieces of information. The pointers
pPrevAlloc and pNextAlloc insert this allocation into the linked list of
allocations. When performing an Alloc (equivilent of malloc), the newest
element is inserted at the end of the linked list, with pPrevAlloc pointing to the
previous last element and pNextAlloc pointing to the first element (which is
actually a fake). When performing an AllocFree (equivilent of a free), the
element is removed from the list and the elements before and after the removed
element are then set to point to each other.

pFileName and iFileLine identify where in the program the allocation was
made. This provides a very useful way to refer to a heap element. On any
allocation (Alloc, Realloc, Some, or Free), the name and line of the calling
function will be placed in these vars, giving you the location of the last call for
this element. Although AllocSize will list the location it was called from if you
request the size of a bad pointer, its location is not placed in the ALLOC struct.

The uSize element holds the size of the allocation, as requested by the calling
program, not including the extra bytes holding the ALLOC struct and end
bytes. This is done because there is no standard call to get the size of an
malloced element, and when a library does have a call to return the size of an
alloc, it is generally much slower than using an euSize.

The uId element holds the value ALLOC_ID. If this element does not hold
ALLOC_ID, then it is assumed that this is not an element in the heap. This
stops the debug code from going out to lunch if the heap has been corrupted.
When walking the heap, if an element does not have uId set properly, the walk
stops. When passed a pointer, if this element is not ALLOC_ID, then it is
assumed that the pointer is bad, and the function returns immediately.

The uChk element holds ALLOC_CHK1 and checks for underwrites. This
happens when you write before the beginning of some malloced memory.
Following the struct is the user memory followed by another word that holds
ALLOC_CHK2. Whenever the heap is walked, the words at the beginning and
end are checked for overwrites and underwrites. If your program writes over
these words, the program will continue, but it leaves them overwritten.

76 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Alloc.h

The program example below illustrates the use of the ALLOC
structure.

typedef unsigned char BYTE;
typedef char FLAG;
#define Flag(a) ((FLAG) ((a) ? (true) : (false)))
#define Not(a) ((FLAG) ((a) ? (false) : (true)))

#define ALLOC_ID 0x1234
#define ALLOC_CHK1 0x5A96
#define ALLOC_CHK2 0xA569 // follows malloced mem
#define ALLOC_CHK3 0xEF // fills freed mem

typedef struct S_ALLOC
 {
 struct S_ALLOC *pPrevAlloc; // points to prev alloc
 struct S_ALLOC *pNextAlloc; // points to next alloc
 BYTE *pFileName; // points to file
 int iFileLine; // points to line number
 unsigned uSize; // size of alloc
 unsigned uId; // ALLOC_ID
 unsigned uChk; // ALLOC_CHK1
 } ALLOC;

#define REALLOC_NONE 0x00
#define REALLOC_NOMOVE 0x01 // don't move to expand
#define REALLOC_NODISCARD 0x02 // don't discard on fail

#ifdef DEBUG
#define Alloc(uSize) _Alloc (uSize,__FILE__,__LINE__)
#define AllocFree(pBuf) _AllocFree (pBuf,__FILE__,__LINE__)
...
#else
#define Alloc(uSize) _Alloc (uSize)
#define AllocFree(pBuf) _AllocFree (pBuf)
#endif

ALLOC _AllocHeap;

The function _AllocChkHeap will check a specific heap element passed to it
and then call _AllocHeapWalk to check the entire heap. _AllocChkHeap is

 77 No Bugs

called at the beginning of every Alloc function that is passed a pointer. It first
checks the passed pointer.

The function _AllocWalkHeap checks the entire heap. If it finds an element
that has an invalid value for uId, it prints a message and then exits
immediately (you might prefer to abort rather than return here). It then checks
for overwrites and underwrites on each element and prints a message if it finds
one. If fShowOk is true, it will also print out all good allocations.

These functions should never be called in the retail version of the program.
Therefore, there are totally enclosed within a #if DEBUG so they will not be
compiled in non-debug mode. If they are called in non-debug mode, a link
error will result.

AllocChkHeap and AllocHeapWalk

The program example below illustrates the use of AllocChkHeap
and AllocHeapWalk

#if DEBUG > 0

// check the item passed and the heap
static FLAG _AllocChkHeap (ALLOC *pAlloc)
{
FLAG fRtn=false;

 // check the alloc on
 if ((pAlloc != NULL) && (pAlloc->uId != ALLOC_ID))
 {
 _AllocPrintf (pAlloc, "Bad Pointer", true);
 fRtn = true;
 }

 if (_AllocWalkHeap (false))
 return (true);
 return (fRtn);
}

// list the heap
static FLAG _AllocWalkHeap (FLAG fShowOk)
{
BYTE *pStr;
ALLOC *pAlloc;

78 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

FLAG fRtn;

 // walk the heap - check ID, begin and end check words
 if ((pAlloc=_AllocHeap.pNextAlloc) == NULL)
 return (false);

 for (fRtn=false; pAlloc!= &_AllocHeap; pAlloc=pAlloc-
>pNextAlloc)
 {
 if (pAlloc->uId != ALLOC_ID)
 {
 _AllocPrintf (pAlloc, "* Heap Corrupted", true);
 return (true);
 }
 pStr = NULL;
 if (pAlloc->uChk != ALLOC_CHK1)
 pStr = "Underwrite";
 if (*((unsigned *) (((BYTE *) pAlloc) + sizeof (ALLOC) +
 pAlloc->uSize)) !=
ALLOC_CHK2)
 {
 if (pStr)
 pStr = "Under&Overwrite";
 else
 pStr = "Overwrite";
 }
 if (pStr)
 _AllocPrintf (pAlloc, pStr, true);
 else
 if (fShowOk)
 _AllocPrintf (pAlloc, "Ok: ", false);
 }

 return (fRtn);
}

static void _AllocPrintf (ALLOC *pAlloc,BYTE *pStr,FLAG fErr)
{

 if (fErr)
 DebugPrintf ("ERROR Alloc: ");
 if (pAlloc->uId == ALLOC_ID)
 DebugPrintf ("%s, File: %s, Line:%d, Ptr:%#x, Size:%u\n",
pStr,

 79 No Bugs

 pAlloc->pFileName, pAlloc->iFileLine, pAlloc+1, pAlloc-
>uSize);
 else
 DebugPrintf ("%s, BAD PTR, Ptr:%#x, Size:%u\n", pStr,
pAlloc+1, pAlloc->uSize);
}

#endif

Alloc very simply calls malloc, places the new allocation in the linked list, and
zeroes out the memory. The "*pAlloc++ = sAlloc" changes the value of pAlloc
from the leading struct to the user area of the memory. Notice that after the
memset of the user memory, it sets the word value directly after the user
memory.

Because we zero memory even in non-debug mode, we need a non-debug
version of Alloc. Therefore, we have a very simple and fast Alloc for non-
debug mode.

You will notice that _Alloc, as well as numerous calls further on in this book
have different parameters in the debug and non-debug versions, namely the
module name and line number the function was called from. In each case,
pFile and iLine are always the last elements, so that it is not traumatic if debug
and non-debug code is mixed (although you may get interesting file names on
a DebugPrintf).

Alloc

The program example below illustrates the use of Alloc.

#if DEBUG

void *_Alloc (unsigned uSize,BYTE *pFile,int iLine)
{
ALLOC *pAlloc;
ALLOC sAlloc;

 // you need to do this first in case of an error
 _AllocInit (&sAlloc, uSize, pFile, iLine);

 // see if the heap is ok. This takes a while, so don't
 // do it if DEBUG is < 2.

80 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

#if DEBUG > 1
 if (_AllocChkHeap (&sAlloc))
 return (NULL);
#endif

 if (uSize > 0xFFFE-sizeof(ALLOC)-2)
 {
 _AllocPrintf (&sAlloc, "Malloced too much memory", true);
 return (NULL);
 }

 if ((pAlloc = malloc (uSize+sizeof(ALLOC)+2)) == NULL)
 return (NULL);

 // insert it into the linked list
 if (_AllocHeap.pPrevAlloc == NULL)
 {
 sAlloc.pPrevAlloc = &_AllocHeap;
 _AllocHeap.pNextAlloc = pAlloc;
 }
 else
 {
 sAlloc.pPrevAlloc = _AllocHeap.pPrevAlloc;
 (_AllocHeap.pPrevAlloc)->pNextAlloc = pAlloc;
 }
 sAlloc.pNextAlloc = &_AllocHeap;
 _AllocHeap.pPrevAlloc = pAlloc;

 // put the struct contents in
 *pAlloc++ = sAlloc;

 // zero it out and put the chk at the end
 memset (pAlloc, 0, uSize);
 *((unsigned *) (((BYTE *) pAlloc) + uSize)) = ALLOC_CHK2;

 return ((void *) pAlloc);
}

#else

void *_Alloc (unsigned uSize)
{
void *pRtn;

 if (uSize > 0xFFFE-2)

 81 No Bugs

 return (NULL);

 if (! (pRtn = malloc (uSize+2)))
 return (NULL);

 memset (pRtn, 0, uSize+2);
 return (pRtn);
}

#endif

static void _AllocInit (ALLOC *pAlloc,unsigned uSize,BYTE
*pFile,int iLine)
{

 pAlloc->pFileName = pFile;
 pAlloc->iFileLine = iLine;
 pAlloc->uSize = uSize;
 pAlloc->uId = ALLOC_ID;
 pAlloc->uChk = ALLOC_CHK1;
}

When freeing memory, you again check the entire list of malloced memory. If
the heap is still okay at this point, then you did nothing wrong with the pointer
you passed in.

We then take this pointer out of the linked list.

Another common heap bug is to free a pointer and then access it again.
Therefore, we fill the memory before freeing it. This guarantees that accessing
the pointer again will return garbage. This step catches any accesses to the
freed memory.

AllocFree

The program example below illustrates the use of AllocFree.

void _AllocFree (void *pMem,BYTE *pFile,int iLine)
{
ALLOC *pAlloc;

 // Doing a free on NULL is NOT an error
 if (! pMem)
 return;

82 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // you need to do this first in case of an error
 pAlloc = ((ALLOC *) pMem) - 1;
 pAlloc->pFileName = pFile;
 pAlloc->iFileLine = iLine;

 // see whether the heap is okay. This takes a while, so don't
 // do it if DEBUG is < 2.
#if DEBUG > 1
 if (_AllocChkHeap (&sAlloc))
 return (NULL);
#endif

 // take it out of the list
 if (pAlloc->pPrevAlloc == pAlloc->pNextAlloc)
 _AllocHeap.pPrevAlloc = _AllocHeap.pNextAlloc = NULL;
 else
 {
 (pAlloc->pPrevAlloc)->pNextAlloc = pAlloc->pNextAlloc;
 (pAlloc->pNextAlloc)->pPrevAlloc = pAlloc->pPrevAlloc;
 }

 // fill up the memory in case it's accessed
 memset (pAlloc, ALLOC_CHK3, pAlloc->uSize + sizeof (ALLOC) +
2);

 // free it
 free ((void *) pAlloc);
}

Realloc is complicated due to its ability to handle the NOMOVE and
NODISCARD flags. If the pointer passed is bad, it returns NULL immediately.

If NOMOVE is not set, it allocates a new element of the new size. It then copies
the old element contents to the new element and frees the old element. This
forces a realloc to always move, and freeing the old element will trash the
contents of the old pointer. Therefore, if you don't use the new pointer from a
realloc or access the old pointer after a realloc, you will get bad data.

This is purposely designed to cause an immediate and noticeable error if you
use an old pointer after a realloc. Otherwise, on a realloc you might get a very
intermittent bug.

 83 No Bugs

AllocRealloc

The program example below illustrates the use of \\?\\.

// you move it (if it's moveable) so if it the program assumes
it stays - it's hosed
void *_AllocRealloc (void *pMem,unsigned uSize,BYTE bFlags,BYTE
*pFile,int iLine)
{
ALLOC *pAlloc, *pAllocNew;

 if (! pMem)
 return (_Alloc (uSize, pFile, iLine));

 // lets get the struct
 pAlloc = ((ALLOC *) pMem) - 1;

 // Do you have a ptr?
 if (pAlloc->uId != ALLOC_ID)
 {
 DebugPrintf ("ERROR Alloc: AllocRealloc on bad pointer(%#x),
File:%s, Line:%d\n",
 pMem, pFile, iLine);
 _AllocChkHeap (NULL);
 return (NULL);
 }

 pAlloc->pFileName = pFile;
 pAlloc->iFileLine = iLine;

 // see whether the heap is okay
 if (_AllocChkHeap (pAlloc))
 return (NULL);

 // can't up it
 if (uSize > 0xFFFE-sizeof(ALLOC)-2)
 {
 _AllocPrintf (pAlloc, "Malloced too much memory", true);
 if (! (bFlags & REALLOC_NODISCARD))
 AllocFree (pMem);
 return (NULL);
 }

 // let's get the new heap
 if (! (bFlags & REALLOC_NOMOVE))

84 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 {
 if (pAllocNew = _Alloc (uSize, pFile, iLine))
 {
 // copy contents across (no need to zero extra, allocate
did it)
 MemCpy (pAllocNew, pMem, Min (uSize, pAlloc->uSize));
 AllocFree (pMem);
 pAllocNew--;
 }
 }
 else
 if ((pAllocNew = _expand (pAlloc, uSize+sizeof(ALLOC)+2)) !=
NULL)
 {
 if (uSize > pAlloc->uSize)
 MemSet (pAllocNew+sizeof(ALLOC)+pAlloc->uSize, 0, uSize
- pAlloc->uSize);
 pAllocNew->pFileName = pFile;
 pAllocNew->iFileLine = iLine;
 }

 // no mem avail
 if (! pAllocNew)
 {
 _AllocPrintf (pAlloc, "No memory avail", true);
 if (! (bFlags & REALLOC_NODISCARD))
 AllocFree (pMem);
 return (NULL);
 }

 return ((void *) (pAllocNew + 1));
}

AllocCheck will dump all bad malloced elements. AllocList will dump all
malloced elements, good and bad. Their purpose is to assist in debugging, and
you can call either at any time. If the heap is getting trashed somewhere and
you are not sure exactly where, put in a number of calls to AllocCheck, and a
message will appear where the heap is corrupted. The corruption occurred
after the previous AllocCheck and before the one listing the corruption.

If you are not freeing up all of your malloced memory at the end of a function
in your code, call AllocList before and after your function. With this you can
track down where you are not freeing a pointer.

 85 No Bugs

How to use the memory

The following practices will not solve all of your heap problems, but they will
take you a long way in that direction. The beauty of this system is that once
you start using it, it stays pretty much invisible until you make a mistake.
When you do make a mistake in handling your heap, it will usually tell you
exactly where to look for the bug.

Be sure all freed

AllocDone should be called at the end of your program. This is a final check to
ensure that the heap is not corrupted and that you have freed up all allocations.
Although it's okay to not free a pointer that must remain malloced for the
entire life of the program, you should be sure that all pointers that are used for
periods shorter than the life of the program were freed.

I free all pointers that exist for the life of the program before calling AllocDone.
That way, if I see any elements left in the heap, I know that I forgot to free a
pointer somewhere.

AllocDone

The program example below illustrates the use of AllocDone.

FLAG _AllocDone ()
{

 if (_AllocHeap.pNextAlloc == NULL)
 {
 DebugPrintf ("NO remaining Allocs\n");
 return (false);
 }

 DebugPrintf ("Remaining Allocs:\n");
 if (_AllocWalkHeap (true))
 DebugPrintf ("ERROR: Alloc Heap Corrupted\n");
 return (true);
}

86 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Asserting a pointer to the heap

There are times we will want to assert a pointer that we believe is allocated
from the heap (and is at least n bytes long). Using _AllocChkHeap, we can
verify that our pointer is food. Using AllocSize, we can then verify the length.

AssertHeapPtr

#if DEBUG > 0
#define AssertHeapPtr(p,s) CheckHeapPtr (p, s)
#else
#define AssertHeapPtr(p,s)
#endif

...

void CheckHeapPtr (void *pMem, unsigned uLen)
{
ALLOC *pAlloc;
unsigned uSize;

 // Get the ALLOC struc
 pAlloc = ((ALLOC *) pMem) - 1;

 // See if its a legit pointer
 if (_AllocChkHeap (pAlloc))
 return;

 // Check its size
 if ((uSize = AllocSize (pMem)) < uLen)
 DebugPrintf ("Pointer from %s:%d, len: %d < required len
%d\n", pAlloc->pFileName, pAlloc->iFileLine, uSize, uLen);
}

EMS and XMS

EMS and XMS provide very similar functions and are more difficult to check
than heap allocations. They are also trickier to use than regular memory, and
we are therefore more likely to make a mistake with them. Therefore, it is
imperative to check calls to this memory as thoroughly as possible.

 87 No Bugs

EMS and XMS are becoming less and less important as time goes on. Windows
doesn't use them. DOS applications that need lots of memory are generally
now being written as DPMI applications that, while they do use XMS, the
DPMI server does that and an application doesn't make any XMS calls itself.

If you do not care about EMS or XMS, read the section below on handle
tracking (also used in Chapter 9, "File I/O") and then skip the rest of the
chapter. I have included very little code in the following sections, only enough
code to convey the basic concepts. Full code is available on the companion disk.

Handle tracking

Unfortunately, you cannot place headers and tails on EMS/XMS memory as
you can on the heap. However, you can still implement most of the checking
you have with the heap.

First of all, for each EMS/XMS allocate, we allocate a header like the one we
use with the heap. However, this memory is generated with a malloc in
regular memory. We use this malloc'ed memory to track our usuage of EMS
and XMS memory (as well as file handles in the next chapter).

These structures hold the handle of the malloced memory. Because each
handle is unique, you have a linked list for EMS and another for XMS. This
adds a small amount of processing. With heap memory, you know where the
structure is when passed a pointer. With EMS and XMS, you have to walk the
appropriate linked list to find the handle you were passed.

To do this, we create a set of handle calls. The first creates a linked list. Each
linked list has a different data size used to store the information associated
with a given set of handles. This becomes important when used with files
where you want to store the filename, which can be 74 bytes long.

HdlCreate

The program example below illustrates the use of allocating
memory to go with a handle.

typedef struct S_HANDLE_NEXT
 {
 struct S_HANDLE_NEXT *pNext;
 int iHdl;

88 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 } HANDLE_NEXT;

typedef struct S_HANDLE_HDR
 {
 HANDLE_NEXT sHdlNext;
 unsigned uSize;
 } HANDLE_HDR;

HANDLE_HDR *HdlCreate (unsigned uSize)
{
HANDLE_HDR *pHdl;

 if ((pHdl = malloc (sizeof (HANDLE_HDR))) == NULL)
 return (NULL);

 memset (pHdl, 0, sizeof (HANDLE_HDR));
 pHdl->uSize = uSize;
 return (pHdl);
}

Once you have created a list, you need to add an element to the list each time
you get a handle. You allocate enough memory to hold a HANDLE_NEXT
structure as well as additional uSize bytes. Therefore, for each EMS/XMS
allocation, you will have a malloc.

We store the handle in HANDLE_NEXT so that you can find a structure for a
specific handle. The rest of the information is stored in the additional
malloc'ed memory directly following the HANDLE_NEXT structure. This
additional information is used when writing debug printfs to identify the
handle.

For both EMS and XMS, you identify the handle by the module and line
number where it was created. However, in the case of EMS, you can also give
an allocation a name up to 8 bytes long. Because this name is a better identifier,
we also track the name for EMS.

(A note on when to call malloc and when to call Alloc. Your non-debug code
should contain only calls to Alloc. Your debug code, however, should
generally call malloc for two reasons. First, it is very easy to get into recursive
loops when debug code calls debug code. Second, the debug code should
attempt to make a minimal impact on the system—and every byte counts when
it comes to malloc.)

 89 No Bugs

HdlAdd

The program example below illustrates the use of adding an
element to the linked list.

typedef struct S_HANDLE_XMS
 {
 BYTE *pFile;
 int iLine;
 unsigned uMaxKb;
 } HANDLE_XMS;

// Add a newly malloced handle to the linked list
void HdlAdd (HANDLE_HDR *pHdlHdr, int iHdl, void *pData)
{
HANDLE_NEXT *pHdlNext;

 // Allocate the memory for a linked-list element
 // If you can't get the memory, you simply don't do it
 if ((pHdlNext = malloc (sizeof (HANDLE_NEXT) +
 pHdlHdr->uSize)) == NULL)
 return;

 // Add ourselves to the linked list - at the front
 pHdlNext->pNext = pHdlHdr->sHdlNext.pNext;
 pHdlHdr->sHdlNext.pNext = pHdlNext;
 pHdlNext->iHdl = iHdl;

 // If you store additional data, save it
 if (pHdlHdr->uSize)
 memcpy (pHdlNext + 1, pData, pHdlHdr->uSize);
}

We can now verify the handle passed to all EMS and XMS functions. If a bad
handle is passed, a MessageBox will pop-up displaying the bug.

Because EMS and XMS handles are global to the system instead of an
application, a bad handle can work - but you are using memory belonging to
another application. This can lead to intermittent & deadly bugs.

We can also check the function parameters against the size of the malloced
memory. This is useful for the copy functions under both EMS and XMS. It
can also be used for the mapping command under EMS.

90 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

The HdlFind call provides the ability to find a linked list element based on its
handle value. This call gives us the functionality we need both to verify a
handle and to retrieve the size of a handle's memory block.

HdlFind

The program example below illustrates HdlFind

void *HdlFind (HANDLE_HDR *pHdlHdr, int iHdl)
{
HANDLE_NEXT *pHdlOn, *pHdlPrev;

 pHdlPrev = &(pHdlHdr->sHdlNext);

 while ((pHdlOn = pHdlPrev->pNext) != NULL)
 {
 // If you find it - return the associated data
 if (pHdlOn->iHdl == iHdl)
 return (pHdlOn + 1);

 pHdlPrev = pHdlOn;
 }

 return (NULL);
}

To verify a handle, all you have to do is see whether HdlFind returns a non-
null value. At the beginning of each EMS and XMS function, you merely add
the following code segment.

HdlExist

The program example below illustrates the use of HdlFind to see
if a passed in handle is legit.

#if DEBUG
 if (! HdlFind (pHdlHdrEms, iHdl))
 DebugMessageBox ("func (%d, ...)\nBad Handle", iHdl);
#endif

When you free a handle, you need to do the same in your linked list. You do
this with HdlDelete. It removes the element from the linked list and then frees

 91 No Bugs

the malloc'ed memory. It has to walk the list because you have a singly linked
list, and you need the element prior to the one you are deleting to remove it
from the linked list.

HdlDelete

The program example below illustrates HdlDelete.

void HdlDelete (HANDLE_HDR *pHdlHdr, int iHdl)
{
HANDLE_NEXT *pHdlOn, *pHdlPrev;

 pHdlPrev = &(pHdlHdr->sHdlNext);

 while ((pHdlOn = pHdlPrev->pNext) != NULL)
 {
 // If found, remove it, free it, and return
 if (pHdlOn->iHdl == iHdl)
 {
 pHdlPrev->pNext = pHdlOn->pNext;
 free (pHdlOn);
 return;
 }

 pHdlPrev = pHdlOn;
 }
}

Finally, you can determine on exit whether you have freed all of your memory.
In the case of XMS memory, you can also determine whether the unfreed XMS
memory was left locked on exit (a very bad situation). Because you will store
the __FILE__ and __LINE__ from each alloc in the linked list, you can display
the location of the alloc on any errors.

Because DOS does not clean up EMS and XMS allocations on exit, it is very
important that a program free up all malloced EMS and XMS memory on exit.
If it doesn't do this, then every time the program is run, it will use up
additional memory.

HdlNext

The program example below illustrates HdlNext.

92 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

void *HdlNext (HANDLE_HDR *pHdlHdr, void *pData)
{
HANDLE_NEXT *pHdlOn;

 // If there are no elements, return NULL
 if (! (pHdlOn = pHdlHdr->sHdlNext.pNext))
 return (NULL);
 // If you passed in NULL, it's find first
 if (! pData)
 return (pHdlOn + 1);

 // Get the one you found last time
 // Re-walk because you DON'T trust to be passed a good value
 while ((pHdlOn + 1) != pData)
 if ((pHdlOn = pHdlOn->pNext) == NULL)
 return (NULL);

 // You have the last one. Get pNext - it may be NULL
 if ((pHdlOn = pHdlOn->pNext) == NULL)
 return (NULL);
 return (pHdlOn + 1);
}

When a program exits, it can then call HdlNext to walk the list of malloced
EMS and XMS memory to see what has not been freed. Do not use this as a
way to clean up in a final release of a program; this list should ALWAYS be
empty when exiting. If not, find where you should be freeing memory and free
it.

Expanded memory (EMS)

On start-up, most programs need to check to see whether they have real EMS
memory (including 386 software emulators) or whether they have an 8086-
based software emulator. An 8086-based emulator cannot map the same page
of EMS memory to two locations in the page frame simultaneously. A
hardware or 386-based software emulator can.

To check this, allocate a page, map it to two physical pages, set the memory in
one page to a value, and then check it in the other page to see whether it
matches. If it does, change it and check again. If it still matches, you can use
the memory.

 93 No Bugs

If you only access EMS by using the copy function, then the above test is
unnecessary. You need to perform this test only if you might end up mapping
the same physical page to two logical pages simultaneously.

This check, along with checking the EMS version support (and determining
whether EMS memory even exists) should be part of your check to see whether
a system has EMS memory. All of this should occur in both debug and non-
debug modes.

On initialization, we allocate a 4-page EMS block. We then fill these pages with
FILL_CHAR. When a page is mapped to -1 (that is, map nothing), we map in
the appropriate page from our 4-page block. When a new page is mapped in,
we check our FILL_CHAR page.

This performs two services. First, if you read from a page after unmapping it,
you will get garbage data. Second, if you write to a page after unmapping it,
you will see the change when you test on the next map call. You also should
test each FILL_CHAR page mapped in in our TestAll function.

When allocating EMS memory, we need to add the EMS handle to your linked
list for EMS. In debug mode, you should also include the file and line the
function was called from.

We also initialize the malloced memory to FILL_CHAR. EMS memory is
generally recycled—even more so than heap memory—so that reused memory
is almost always holding the same values the previous user of the memory
assigned.

You must save and restore the page state before andafter the fill. Otherwise, a
call to allocate EMS memory in debug mode will cause the page map to
change. This would introduce a bug—and our job is to eliminate them.

You can also name the EMS memory. If you do so, copy the name into
HANDLE_EMS. This is not required, but naming the memory makes it easier
to identify. Naming is a good idea in general because programs such as mem
will display the name.

On all the EMS functions passed a handle, first check to see whether the
passed-in handle is one you recognize. If not, pop up a message box that says
you passed in a bad handle.

94 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

EmsCheckHdl

The program example below illustrates the use of checking the
EMS handle.

#if DEBUG
 // See whether it's our handle
 if ((pHdlEms = HdlFind (pHdlHdrEms, iHdl)) == NULL)
 DebugMessageBox ("func (%d, ...)\nBad Handle", iHdl, ...);
#endif

If, after calling the EMS driver, you get an error, pop up a box identifying the
error by the function called, the parameters you passed in, and the module and
line number where the memory was originally malloced. This will usually
make it very easy to determine what EMS memory had the error.

In many cases you use EMS only as a storage medium. In this case, you should
use the copy command. Copying is usually faster than mapping the memory
down, performing the copy, and then unmapping. In addition, you can test a
copy. Once a page is mapped, the pointer can be used in any manner, including
going past the beginning or end of the page.

On an EmsCopy, you first should test and ensure that the source or destination
is EMS memory (its ok if both are EMS). You then need to test the EMS
handles to ensure they are handles you malloced and ensure that the offset
plus length is within the number of pages you malloced.

If you perform an overlapping copy within one EMS block, then if the copy is
successful, you still receive an error from the EMS manager. If you receive this
error, you should check and not put the error up if you passed in an
overlapped move. After all, if debug pop-ups are false alarms too often, you
start ignoring them.

If you do need to map in pages, you can perform a number of tests. First, if
you never need to map in more than two pages at a time, map them into the
middle two pages and keep the FILL_CHAR pages at pages 0 and 3. This will
allow you to discover any write that goes over or under the page limits.

Second, you can write an AssertEmsPtr. For a given pointer to EMS, you
generally know what handle and page it should be pointing to. In some cases,
it might point to one of several contiguous pages. You can do the following:

 95 No Bugs

1. Ensure that you are pointing to a page from the malloced block.

2. Ensure that the logical page you expect to be mapped is in fact mapped to
that physical page.

3. Ensure that the pointer is in fact pointing to the physical page or pages you
expect it to be pointing to.

AssertEmsPtr

The program example below illustrates AssertEmsPtr.

AssertEmsPtr (void *pBuf,int iHdl,int iPhy,int iLog,int iNum)
{
int iPage;

 // See whether it's our handle
 if ((pHdlEms = HdlFind (pHdlHdrEms, iHdl)) == NULL)
 {
 DebugMessageBox
 ("AssertEmsPtr (%p, %d, %d, %d, %d)\nBad Handle",
 pBuf, iHdl, iPhy, iLog, iNum);
 return;
 }

 // Do you have this handle mapped?
 for (iPage=0; iPage<iNum; iPage++)
 if ((aPageMap[iPage+iPhy][0] != iHdl) ||
 (aPageMap[iPage+iPhy][0] != iLog+iPhy))
 DebugMessageBox ("AssertEmsPtr (%p, %d, %d, %d, %d)\n\
Malloced File: %s, Line: %d, Name: %s\n\
Handle %d, Logical page %d mapped to Physical page %d",
 pBuf, iHdl, iPhy, iLog, iNum,
 pHdlEms->pFile, pHdlEms->iLine, pHdlEms->sName,
 aPageMap[iPage+iPhy][0], aPageMap[iPage+iPhy][1],
 iPage+iPhy);

 // Is the pointer within the pages?
 if ((pBuf < pBase+iPhy*0x4000) ||
 (pBuf > pBase+(iPhy+iNum)*0x4000))
 DebugMessageBox ("AssertEmsPtr (%p, %d, %d, %d, %d)\n\
Malloced File: %s, Line: %d, Name: %s\nPointer out of range",
 pBuf, iHdl, iPhy, iLog, iNum,
 pHdlEms->pFile, pHdlEms->iLine, pHdlEms->sName);

96 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

}

The rest is all straightforward. When freeing an EMS handle, remove it from
the Hdl linked list. Then fill it with FILL_CHAR before freeing the EMS
memory. When reallocing a hdl, if it expands, fill the new pages with
FILL_CHAR. When your program ends, walk the linked list to identify any
memory that was not freed.

A cautionary note: A lot of the EMS drivers, mainly hardware-based ones,
have bugs in them (their developers must not have read this book). What's
worse, these bugs usually crop up only in specific cases (for example, copying
16K plus 2 bytes that exactly crosses three pages). Although copy seems to be
the function that has the most problems, it's not the only one. If you are
chasing a bug that only happens on one system, it might not be your fault.

Extended memory (XMS)

The only way you should access extended memory is as described in the XMS
specification. There is no excuse for doing it any other way anymore, and you
will trip over other programs if you use another method such as int 15h. Using
another method is a very good way to guarantee bugs, in which case you will
have systems where your program and another program both use the same
extended memory.

On all copies to and from XMS, verify that the number of bytes passed to copy
is even. This is a requirement of the XMS specification. However, it is enforced
on some XMS handlers and not on others. Passing in an odd number of bytes
will lead to errors on some systems.

If you lock XMS memory, be sure you track locks. Locks can cause XMS
memory to become fragmented, which can make it a lot less usable. On an
XMS free, you should pop up a box if the memory is still locked. You should
also list if it is locked when walking unfreed memory at the end of your
program.

 97 No Bugs

Chapter 9

FILE I/O

A write-only program is probably one of the most deadly MFUs in existence.
A write-only program is one that can save its data to a file but then can't read it
back. There is a bug either in how it was written or in the code reading it back.
However, by the time the user realizes the problem, its usually too late - the
data is gone. (Sytos is infamous for this, you can backup your data to tape but
just try and restore any of it.)

Also, just in terms of general bugs, many applications assume that most file
operations will succeed. I know of numerous compilers and linkers (names
withheld to protect the guilty) that simply bomb out if the ram disk they are
using for a temporary file fills up.

This chapter covers what we can do to try and make our file I/O bug free. Two
checks are particularly powerful, consistency checking of the file and assertion
checking of file records. Unfortunately, these are program specific checks and
therefore need to be written on a file-type-by-file-type basis.

Consistency checks

Most files used by programs are not ASCII files. They are data files of some
type. (When a linker makes an .EXE file, the .EXE file at that time is a data file.)
Any data file must obey certain rules.

Sometimes the rules are very simple. For example, a WordStar text file is
relatively freeform. However, the eighth bit should be set relatively often in it
and at the first letter of a word.

At other times the rules are very strict and complex. In these cases, it is
relatively easy to tell whether the file is truly of the data type you expect. Even
more important, in this case, you can determine whether the file is good or
corrupted.

98 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Using the rules, you can write a consistency check for a file. This consistency
check, when passed a file handle, checks the file. After each open and before
each close, you then call this consistency check.

If the check takes too much time, set the #if DEBUG > 4 so it is used only when
the tester is willing to trade off speed for extreme debug checking. Also, if
possible, have separate open and close functions for each data type. This
makes it easier to include the checks.

This check should be as thourough as possible. If your program is fed a bad
data file, you don't want to waste time tracking down non-existent bugs in
your code (after all, you have enough real bugs to find). When you create a
file, if it writes bad data then the data is gone forever in many cases.

Assertion

Many of the file types with strict rules are written to one block at a time. Each
block might not be of the same size, but each block holds a record or element in
the file structure.

If an element has rules within itself, then its structure can be asserted. Just as
with a data structure stored in memory, write an assertion function for the
element.

After each read and before each write, assert the data. This ensures that the
data you think you are reading or writing is actually being read or written. If
you are reading or writing bad data, you are virtually guaranteed to have
problems.

If you read in bad data, you know about it before your code has to handle it.
You then know where to look if your program chokes on the data. If you write
bad data, you know that somewhere in your program you have a bug that has
corrupted your data. Without the assertion, you might not see the bug until
your program reads the bad data and hits another bug trying to handle the bad
data.

Open

The parameter checking on an open call is minimal. You can check to see that
the filename is not NULL or empty. It's dangerous to check the name to see

 99 No Bugs

whether it's legitimate because various networks allow unique naming
conventions.

More important, you can check the sharing bits set. Certain combinations are
illegal. In addition, insure that the sharing is not set to compatibility mode.

On an open, save the __FILE__, __LINE__, name, and handle returned by a
successful open. This way, on subsequent errors you can fully identify the file
by the module name and line number where it was opened as well as by its
name. This is a lot more valuable than simply saying handle 5 had an error.

This information is tracked using the Hdl___ calls discussed in Chapter 8,
"Watching Heap Allocation." These calls store information associated with a
handle in regular memory. These calls are also used to recall this information
on a per handle basis.

Two specific errors on an open should be considered normal. These are File
Doesn't Exist (you tried to open a nonexistent file) and File Already Exists (you
tried to create a file that already exists). These errors should be considered
normal returns, just like a successful open.

For any other error, however, you should pop up a message box listing the
filename and the error returned. These other errors are not only a rare
situation, but also one that might signal other problems.

If the open does succeed—or fails in one of the normal manners—write the
information to the debug monitor. Because file opens are rare events, it can be
useful to record the open by filename and handle returned.

The below example is for the standard open call. This should be repeated for
the create and temporary file calls. All three should use the same Hdl linked
list because all the other file calls work on files created from any of these three
sources.

Open

The program example below illustrates the use of open.

typedef struct S_HDL_FILE
 {
 char *pModule;
 int iLine;

100 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 char sFile[76];
 } HDL_FILE;

#if DEBUG
Open (char *pName, unsigned uMode, char *pModule, int iLine)
#else
Open (char *pName, unsigned uMode)
#endif
{
int iHdl;
#if DEBUG
HDL_FILE HdlFile;
#endif

// Check the parameters. This example assumes uMode is al
// in DOS function 3Dh
#if DEBUG
 if ((! pName) || (! *pName) || (uMode & 1100b) || ((uMode &
 11b) == 11b) || (! (uMode & 01110000b) ||
 ((uMode & 01110000b) > 01000000b))
 DebugMessageBox ("Open (%s, %#X)\nBad Parameters",
 pName, uMode);
#endif

 iHdl = open (pName, uMode);

// Display the results
#if DEBUG
 if (iHdl >= 0)
 {
 DebugPrint (0, "Open (%s, %#X) = %d.. ", pName, uMode);

 // Save in out handle table for future use
 HdlFile.pModule = pModule;
 HdlFile.iLine = iLine;
 strncpy (HdlFile.sFile, pFile, 76);
 HdlAdd (pHdrHdlFile, iHdl, &HdlFile);
 }
 else

 // See whether it's a standard error
 if ((errno == 02h) || (errno == 50h))
 DebugPrint (0, "ERROR: %#X, Open (%s, %#X) = -1.. ",
 errno, pName, uMode);
 else

 101 No Bugs

 DebugMessageBox (0, "ERROR: %#X\nOpen (%s, %#X) = -1",
 errno, pName, uMode);
#endif

 return (iHdl);
}

Check handle-based calls

Virtually every file call except open receives a handle as its first parameter.
This handle can be verified to check and see whether it is a handle you opened.
This catches not just I/O to unused file handles, which is usually a benign
error, but also I/O to handles that don't belong to us (ie, a third party library
you are using may have opened a file).

A third-party library will often perform file I/O. If you access one of their files,
you can cause bugs in the third-party library. Therefore, checking file handles
is very important when using third-party libraries.

The following code should be placed at the beginning of all handle-based file
calls. This will produce pop-up a message box if an unknown handle is passed
in.

Handle Check

The program example below illustrates the use of HdlFind for
file I/O.

#if DEBUG
 if (HdlFind (pHdrHdlFile, hFil) == NULL)
 DebugMessageBox ("func (%d, ...)\nUnknown Handle", hFil);
#endif

On virtually all file I/O calls, an error is a very rare event. But if an error
occurs, you want to know about it. It might be legitimate, such as running out
of disk space. Even so, you want to know the error occurred so you can verify
that the program handled the error condition properly.

An error can occur because of a bug in your program. If you calculate an offset
incorrectly, then you may seek past the end of your file. If you create a sharing

102 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

violation, an I/O will fail. If you earlier wrote over some DOS memory data,
unexplained errors can occur.

Therefore, at the end of each file function, add a check to see whether errno is
non-zero. If so, pop up a message box explaining what happened. You will
notice that the pop-up box gives not simply the handle of the file, but also its
name, the module, and the line of source code the Open for the file was called
from. This makes it very easy to determine which file contains the error.

Errno Check

The program example below illustrates the use of checking a file
handle.

#if DEBUG
 if (errno)
 {
 pHdlFil = HdlFind (pHdrHdlFile, hFil);
 DebugMessageBox ("File: %s, Module %s, Line %d\n\
 func (%d, ...)\nError: %#X", pHdlFil->sName,
 pHdlFil->pModule, pHdlFil->iLine, hFil, ..., errno);
 }
#endif

Seek

Seek is interesting. In DOS it merely updates a value in the file table. It does
no verification of any kind. If you seek past the end of a file and then close the
file, the file does not grow to the new seek position. If you seek past the end of
available disk space, no error is returned.

You can view seek two ways:

1. You can perform no testing on it aside from checking the handle. You can
check instead on reads and writes to see whether you are going past the
end of the file.

2. You can check each seek to see whether it is placing the pointer beyond
the end of the file.

 103 No Bugs

Whichever method you choose, you definitely should test to see if you seek
past the end of the file. Being paranoid myself, I place the check in both seek
and read/write.

A bug that did not cause any technical problems can still adversely affect you.
Prodigy took a big public relations hit because their program would write past
the end of a file, getting a lot of old deleted file data in their file in the process.
Then users suspected them of uploading that information to IBM. Prodigy lost
customers due to this bug.

Because seek is used to determine the file length, you have to be very careful to
ensure you don't call yourself indefinitely (although that is a good way to test
the stack-checking code). The approach I use is to get the size of the file,
perform the seek, and then get the new position. If the final position is beyond
the size of the file, then there is an error. This method allows avoid handling
logic for each type of seek.

Seek

The program example below illustrates testing for access past
the end of a file.

// To keep it short, the hFil and errno checks are not shown
long Seek (int hFil, long lOffset, short sType)
{
long lRtn;
#if DEBUG
long lPosition, lLength, lNew;

 // Get the size of the file
 lPosition = seek (hFil, 0L, 1);
 lLength = seek (hFil, 0L, 2);
 seek (hFil, lPosition, 0);
#endif

 // Perform the seek
 lRtn = seek (hFil, lOffset, sType);

 // Check the new position
 // Pop up if you went past the end of the file
#if DEBUG
 lPosition = seek (hFil, 0L, 1);

104 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 lNew = seek (hFil, 0L, 2);
 seek (hFil, lPosition, 0);
 if (lNew > lPosition)
 {
 pHdlFil = HdlFind (pHdrHdlFile, hFil);
 DebugMessageBox ("File: %s, Module %s, Line %d\n\
 Seek (%d,%ld,%d) = %ld\nPast End of File",
 pHdlFil->sName, pHdlFil->pModule, pHdlFil->iLine,
 hFil, lOffset, sType, lNew);
 }
#endif

 // Return the result
 return (lRtn);
}

Read

The most important test you can do on a read is to assert the data read after the
read completes. If it's possible to do so, assert each read. The assert is more
valuable than all these other file tests combined.

That said (and, unfortunately, usually ignored), move ahead to the tests you
can make on any read. A read call should include a call to test the handle on
entry. It should include a test of errno on completion. You should pop up if
errno is any value other than 0. When you read the end of a file, errno is 0, so
an error is an unusual event.

Also, you should check to see whether you are reading past the end of the file.
You do not have to put this in read if it is already in seek. However, it is such
an easy test, I recommend placing it in read also. If the test is not in seek, it
must be placed in read.

You should place two additional tests in read. The first is to fill the read buffer
before performing the read. Then, if you assume you received a full block
when you read the last partial block, you will obviously be using garbage data.

Otherwise, the remainder of the block is filled with the remains of the previous
read. Usually the leftover data is close enough to what you expect that your
program does not crash.

 105 No Bugs

Also, if a read returns the wrong number of bytes read, your program will
again see obviously bad data. Although this is never a problem with DOS,
networks and disk caches are not quite as reliable. This lets you follow Ronald
Reagan's maxim: Trust but verify.

The second additional test is to check the return value. Before doing the actual
read, get the present offset and size of the file. If the offset plus the number of
bytes read is less than or equal to the length, the return should be equal to the
number of bytes requested. Otherwise, the return value should be equal to the
number of bytes remaining in the file. The return value from a read has a well-
defined value. If the return does not match this expected value for any reason,
something is very wrong.

Read

The program example below illustrates reading from a file.

// hFil, errno, and seek checks not show to save space
unsigned Read (int hFil, void *pBuf, unsigned uNum)
{
unsigned uRtn;
#if DEBUG
unsigned uCorrect;
long lPosition, lLength;

 // Get the size of the file
 lPosition = seek (hFil, 0L, 1);
 lLength = seek (hFil, 0L, 2);
 seek (hFil, lPosition, 0);

 // Fill the buffer
 memset (pBuf, '$', uNum);
#endif

 uRtn = read (hFil, pBuf, uNum);

#if DEBUG
 // See whether you got the right return value
 uCorrect = (lPosition + uNum > lLength) ? (unsigned)
 (lLength - lPosition) : uNum;
 if (uCorrect != uRtn)
 {
 pHdlFil = HdlFind (pHdrHdlFile, hFil);

106 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 DebugMessageBox ("File: %s, Module %s, Line %d\n\
 Read (%d,%P,%d) = %d\nShould = %d",
 pHdlFil->sName, pHdlFil->pModule, pHdlFil->iLine,
 hFil, pBuf, uNum, uRtn, uCorrect);
 }
#endif

 // Return it
 return (uRtn);
}

Write

As with read, the most important test you can perform on a write is to assert
the data being written before calling the write. If it's possible to do so, assert
each write. The assert is more valuable than all these other tests combined.

As with a read, a write call should include a call to test the handle on entry. It
should include a test of errno on competetion. You should pop up if errno is
any value other than 0.

Unlike read, a write should always return the number of bytes the write
requested. The test after a write is simple: Did it all get written and did you get
an error?.

In the code below you will notice that two different error conditions produce
the same error message. This is okay here because the error should always be
obvious. If the error is non-zero, that's our problem. If the error is 0, then you
will see that you were not able to write everything.

Although an error should occur if the disk fills up, the event still deserves a
pop-up. First of all, filling a disk is a rare event, and you should know when it
happens. Second, and more importantly, many programs never test their code
if a disk runs out of space. You should be sure the program handles this
situation gracefully.

Write

The program example below illustrates writing to a file.

// hFil, errno, and seek checks not show to save space
// Notice the void const for extra type checking

 107 No Bugs

unsigned Write (int hFil, void const *pBuf, unsigned uNum)
{
unsigned uRtn;

 uRtn = write (hFil, pBuf, uNum);

#if DEBUG
 if ((uRtn != uNum) || (errno))
 {
 pHdlFil = HdlFind (pHdrHdlFile, hFil);
 DebugMessageBox ("File: %s, Module %s, Line %d\n\
 Write (%d,%P,%d) = %d\nError: %#X",
 pHdlFil->sName, pHdlFil->pModule, pHdlFil->iLine,
 hFil, pBuf, uNum, uRtn, errno);
 }
#endif

 return (uRtn);
}

Close

Close is pretty simple and very important. Close checks to see whether the
passed-in handle is legitimate. It then closes the file. After closing the file,
close must remove the associated information for that file from the Hdl linked
list.

Close

The program example below illustrates Closing a file.

void Close (int hFil)
{

#if DEBUG
 if (HdlFind (pHdrHdlFile, hFil) == NULL)
 DebugMessageBox ("Close (%d)\nUnknown Handle", hFil);
#endif

 close (hFil);

#if DEBUG
 // Close can return an error!

108 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 if (errno)
 {
 pHdlFil = HdlFind (pHdrHdlFile, hFil);
 DebugMessageBox ("File: %s, Module %s, Line %d\n\
 Close (%d)\nError: %#X", pHdlFil->sName,
 pHdlFil->pModule, pHdlFil->iLine, hFil, errno);
 }

 // Remove us from the linked list
 HdlDelete (pHdrHdlFile, hFil);
#endif
}

Be sure you closed all of your files. Although an open file is not too dangerous
(DOS will close it), it might point out code that you thought was executed but
never was. Also, file handles are a limited resource, so you should close them
when you are done to free them up. And once a file is closed, its buffer are
flushed and size updated so the file will be fully safe if the machine is booted
before the program ends.

In short, leaving files open when you exit is lazy, sloppy, and potentially
damaging to your program (or to be technical - its not a good idea).
Fortunately, the linked list you have kept of all opened files allows us to
identify files still open by name. This makes it very easy to determine which
files are open.

FilesDone

The program example below illustrates listing the files still
open on file exit.

// Called at program exit to determine which files are
// still open. you check for both our own and other files.
void FilesDone (void)
{
HDL_FILE *pHdlFile;

 // See which files are left open, and then eliminate storage
 for (pHdlFile = HdlNext (pHdlHdrFile, NULL); pHdlFile != NULL;
 pHdlFile = HdlNext (pHdlHdrFile, pHdlFile))
 DebugPrint (0, "File %s opened in %s at line %d still open",
 pHdlFile->sFileName, pHdlFile->pFile, pHdlFile->iLine);

 109 No Bugs

 // Find open files that you don't have in the list
 for (iNum=5; iNum<256; iNum++)
 if (lseek (iNum, 0L, 0) != -1L)
 if (! HdlFind (pHdlHdrFile, iNum))
 DebugPrint (0, "File handle: %d open.. ", iNum);

 // You need to free up the storage so when you look for
 // unfreed memory, it doesn't show our linked list
 HdlClose (pHdlHdrFile);
}

110 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 10

SPECIAL TRICKS FOR C++

All the examples up to now have been given in c (and in asm for the some of
the stack code). However, we are now entering the brave new world of c++.
Like almost everyone else in the PC community, I have only been playing with
c++ for the last 2 years. And its only been within the last 6 months that the
compilers have become good enough to use on commercial code (boy does this
date the book).

This chapter therefore is a first stab at debugging tricks under c++. Like any
other language, we do not have different tricks we perform under c++. Rather,
we have unique ways of implementing the tricks listed previously. However,
C++ does make it easier to implement some of the tricks mentioned before.

Override global new and delete

We want to use the Heap Allocation tricks for new and delete. We redefine
new and delete to our own functions. These functions can then work like the
Alloc and Free calls discussed in Chapter 8, "Watching Heap Allocation."

We want to keep these calls separate from Alloc and Free used in Chapter 8.
Global variables are legitimately not destroyed when the program ends. (This
is not a bug.) We also want Alloc to call malloc while we want our new to call
the original new.

In non-debug mode, you should not redefine new and delete. It is much more
efficient to call them directly. With C++, you simply put the redefinition code
inside a #if DEBUG, and everything else stays the same.

The most useful reason to redefine new is to fill the memory with FILL_CHAR.
This will

 111 No Bugs

• Set all the variables and virtual function pointers to an abviously bad
value

• Find cases where you use variables that have not already been set

• Find places where you use virtual functions for which you never defined
a legitimate function (yes, the compiler should catch this, but you can
outsmart it)

We fill the memory again on a delete. This will catch any accesses to a variable
that has been deleted. This is a more common error under C++ than accessing
a free'ed pointer is under C.

We also have the pre-ID and post-ID bytes. This will catch underwrites and
overwrites of the memory. Over/underwrites are rare in the case of new and
delete since they are for a variable rather than generic memory. However,
since we have redefined new & delete, we might as well do it.

Because underwriting and overwriting are rare in C++, don't bother to build
the linked list of allocations. The linked list is used for two things: to see what
is free when you exit (we don't care), and to see whether the heap has been
overwritten (incredibly rare). This makes new and delete faster and the extra
data used smaller.

Finally, if the new fails (there is no memory to allocate), we put up a message
box. Under c++ the failure of a new is a much more subtle bug than the failure
of a malloc. With malloc, you know when you call it. However, merely by
declaring a variable, you may cause 20 new's to be called, half of which could
fail.

New and Delete

The program example below illustrates redefining new and delete.

#if DEBUG

// Redefine new
void* operator new (size_t size)
{
char *pBuf = ::new (size + 4);

 if (! pBuf)
 {

112 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 DebugMessageBox ("new (%d) failed\n", size);
 return (NULL);
 }

 // Fill with FILL_CHAR, put in the ID bytes
 memset (pBuf + 2, FILL_CHAR, size);
 *((unsigned *) pBuf) = MEM_CHK1;
 *((unsigned *) (pBuf + size + 2)) = MEM_CHK2;

 // return pointer to data area
 return ((void *) (pBuf + 2));
}

// Redefine delete
void* operator delete (void *pBuf, size_t size)
{

 // Check the ID bytes
 if ((*((unsigned *) pBuf) != MEM_CHK1) ||
 (*((unsigned *) ((char *)pBuf + size + 2)) != MEM_CHK2))
 DebugMessageBox ("delete (%d) under/overwritten\n%#X-%#X",
 pBuf, *((unsigned *) pBuf),
 *((unsigned *) ((char *)pBuf + size + 2)));

 // Fill with FILL_CHAR
 memset (pBuf, FILL_CHAR, size + 4);
}

#endif

Constructors and destructors

In constructors, remember to do the following two things. By doing this, c++
automates our setting up a structure, something we had to explicitly do in c.

1. Set all unitialized variables to FILL_CHAR. Be careful, because the data in
a class is not necessarily contiguous. Little things, such as virtual function
addresses, can lurk between variables (usually if the variable is a class) —if
you overwrite these, you are adding bugs, not finding them. The easiest
way around this is to place all the data in a structure. You can access the
elements directly (most compilers support anonymous structures as well as

 113 No Bugs

anonymous unions), and you can then fill the structure with FILL_CHAR.
Then use memset to fill the structure before initializing any variables.

2. Add an ID byte (or word) to each class in debug mode. In the constructor
you can then set the ID to a known value (different for each class). Because
C++ automatically calls the constructor, you are guaranteed that you have
set the ID element.

string constructor

The program example below illustrates the use of a string
constructor.

#define STRING_ID 0x13
class string
 {
private:
 struct s_string
 {
 char str[20];
 char len;
#if DEBUG
 char ID;
#endif
 };
 };

string :: string ()
{

#if DEBUG
 memset (&vars, FILL_CHAR, sizeof (s_string));
 ID = STRING_ID;
#endif

 // init the vars
 len = 0;
}

In the destructor, you first check the ID to see whether it is still correct. If not,
either you have a bad pointer or you overwrote the ID—bad news in either
case. Because the destructor is called when each and every variable goes out of

114 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

scope, you are now checking every variable. This is an incredibly powerful
tool.

Second, you fill the data structure with FILL_CHAR again. Then, if you are
accessing this variable after it has been destroyed, you will get garbage data.
You also overwrite ID so that the ID will be incorrect. You specifically
overwrite ID separate from the memset incase FILL_CHAR is equal to the
correct ID value.

string destructor

The program example below illustrates the use of a string
destructor.

// note - you don't need a destructor in non-debug mode
#if DEBUG
string :: ~string ()
{

 // Be sure ID is okay
 if (ID != STRING_ID)
 DebugMessageBox ("Bad String ID returned");

 memset (&vars, FILL_CHAR, sizeof (s_string));
 ID = ~ STRING_ID;
}
#endif

By using the above practices for constructors and destructors, you simply
eliminate the following types of bugs from all our classes. If you ever use an
uninitialized variable, you will get a bad value (FILL_CHAR). If you get a
pointer to the variable wrong, then when you destroy the wrong pointer, you
will get a message. If you have overwritten the data, you will also get a
message. Finally, if you try to access a variable after it is out of scope, you will
get bad data.

We gain all of these powerful capabilities merely by placing a small amount of
code in each and every constructor and destructor. And the performance hit is
minimal.

 115 No Bugs

Base class assert

Most C++ programmers use a base class that everything is derived from. In
debug mode only, add two methods to the base class. The first is an Assert
function. You can then assert any instance of a class by merely calling
inst.Assert ();. In non-debug mode Assert should be defined as a NULL
function so no code is generated for assert calls.

This places an assert where it belongs, as a part of the class definition. As the
class changes, so will its assert. It also makes it very simple to assert any
instance.

Base Assert

The program example below illustrates the definition of Assert.

class base
 {
 ...

#if DEBUG
 void Assert (void);
 void Dump (void);
#else
 void Assert (void) {};
 void Dump (void) {};
#endif
 }

#if DEBUG
void base::Assert (void)
{

 // This function should never be called
 DebugMessageBox ("No Assert for this class - OhOh");
}
#endif

The second method you should add is Dump. Dump will dump out the
contents of the class to the debug monitor. As with Assert, this puts Dump
where it belongs, with the class. It also makes it easy to dump out the contents
of an instance of a class.

116 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Base Dump

The program example below illustrates the definition of Dump.

#if DEBUG
void base::Dump (void)
{

 // This function should never be called
 DebugPrintf (0, "No Dump for this class - OhOh.. ");
}
#endif

For each class, you define these two functions in debug mode only. In non-
debug mode, the base class definitions of nothing will be used. If one person
designs a class, another developer can then assert or dump it without any
knowledge of the class itself.

This brings some of the debugging into the object-oriented world. Just because
I am trashing an instance of a class, that doesn't mean I want to have to know
how it works. I simply want to know when it is getting trashed.

We can make our asserts as simple as checking for the ID byte or as
complicated as making a consistency check on all the data in the class. The
important thing is to have for each class an assert that will at least look for the
ID. This will catch places where you aren't pointing at the type of variable you
believe you are pointing at.

The below string class is by no means a suggested method to implement.
Rather, it is designed to illustrate the tricks discussed above.

string Assert and Dump

The program example below illustrates a string Assert and Dump
method.

#if DEBUG
void string::Assert (char *pFile=__FILE__,int iLine=__LINE__)
{

 // Are you even pointing at a string?
 if (ID != STRING_ID)
 {

 117 No Bugs

 DebugMessageBox ("string has wrong ID\nFile: %s, Line: %d",
 pFile, iLine);
 return;
 }

 // Check the length
 if ((len < 0) || (len > 20))
 DebugMessageBox("string has len:%d (>20)\nFile:%s, Line:%d",
 len, pFile, iLine);

 // You could check the contents of the string here
 // If you do, return on an iLen error.
}

void string::Dump (void)
{
char sBuf[22];

 // You need to copy str for the printf
 memcpy (sBuf, str, 20);
 sBuf[len] = 0;

 DebugPrintf (0, "string (%d:%s).. ", len, sBuf);
}
#endif

A debug class

When I first decided to write this book, I strongly considered writing all the
code samples in C++ instead of in C. It's not only the language of the future,
but it helps out immensely with eliminating certain classes of bug.
Unfortunately, it is not the language of the present, so this book uses C to
present its concepts.

I also wanted to use C++ because a lot of the concepts in this book belong in a
debug class . Traps and IntTests, DebugPrintfs and DebugMessageBoxes all
should be part of the debug class. Then, when you call them, you are calling
methods in the class.

There is not room in this book to describe every procedure for C++ as well.
However, where possible, implement in C++ instead of in C the tricks in this
book. An inline C++ method is a much better solution than a #define.

118 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 11

SPECIAL TRICKS FOR ASSEMBLY LANGUAGE

If you don't program in assembler, skip this chapter. For the studs reading this
book though, this chapter lists a number of tricks for assembler. Some merely
show how to implement tricks mentioned earlier in this book. Other tricks
though are specific to assembler - they handle bugs that you just won't get in a
higher level language (yes c is slightly higher level than assembler).

The following tricks are not the only ones to use in assembly language. All the
tricks covered in this book up to this point should be used in assembly
language just as they would be in any other language. This chapter brings up
special points about using those tricks in assembly language.

Trap and IntTest

The Trap and IntTest macros are very easy to implement in assembly language.
For every conditional jmp, you place a conditional trap before the jmp and an
IntTest after the jmp instruction. If the jmp will be taken, the Trap will hit an
int 3. If it won't be taken, the IntTest will hit an int 3.

With assembly language, you truly know that you have exercised every
machine instruction. With C and C++, you never know whether the optimizer
created code in such a manner that there are machine-code–level code paths
that were never exercised. This problem doesn't exist with assembly language.

TRAP

The program example below illustrates the use of TRAP and
IntTest.

; Will hit the int 3 if CARRY is set
TRAPc macro
local a

 119 No Bugs

if DEBUG
 jnc short a
 int 3
a:
endif
 endm

; Will hit the int 3
IntTest macro
if DEBUG
 int 3
endif
 endm

; Will hit the int 3 and go no farther
TRAP macro
local a
if DEBUG
a: int 3
 jmp short a
endif
 endm

An equivalent TRAP macro needs to be written for each conditional jmp.
Using the above, each time you put a jc (jmp if carry) in your code, you precede
it with a TRAPc and follow it with an IntTest.

In assembly language it is somewhat common, when first writing the code, to
write code paths you know don't work. For example, on an error you jc to the
error handler, but you haven't written the error-handler code yet. In these
places you place a TRAP until you have code that you believe works. If you hit
a TRAP, you know that going any farther will cause your program to blow up.
Therefore, TRAP just keeps jmp'ing to its int 3.

jc example

The program example below illustrates the use of TRAP and
IntTest.

 ...
 call GetBuf ; Returns CY on error
 TRAPc
 jc Err ; Call failed

120 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 IntTest
 ... ; Finish function
 ret ; Successful

 ; NOTE: Error not written yet
Err: TRAP

BUGBUG

In MASM, you can make BUGBUG a macro. This has the advantage that you
can then have these optionally print to the screen when compiling. As you get
close to your final beta release, you should cause these to print. Like Traps and
IntTests, these should all be removed by the final beta test.

BUGBUG example

The program example below illustrates the use of BUGBUG in masm.
BUGBUG macro str
if PRNT_BUGBUG
%out BUGBUG: str
endif

 ...

 BUGBUG <"Do we need to fix this?">

Checking registers

When leaving an assembly language function, each of the registers falls into
one of four categories.

• The registers that you return information in. If a function returns an int,
then usually that value is returned in AX. These return values can often
be asserted, in which case, as with c, they should be asserted on exit.

• The registers that the function should have preserved. For example, it's a
very rare function that will exit with a value for SS and SP different from
that it was entered with. Be sure these values did not change on return.
It is okay if they were changed within the function, as long as they were
restored on exit.

 121 No Bugs

We can check these registers by preserving them all on entry and checking
them on exit. The following macros use pusha to keep the code example
short. They also don't check segment registers; that check is not needed in
a small model program with no far pointers.

RegEntry must be the first call in each function. If you access variables on
the stack, then you need to take the pusha into account when determining
offsets into the stack for parameters. The equate STACK_OFF can simply
be added to each offset.

The only call that should come after the RegCheck call is a ret. You might
want to include the ret in RegCheck. I prefer to use it separately. A
function with no ret at the end looks strange. RegCheck uses add sp, 16
because you can't restore over those registers that have changed. You
check against the registers that were pusha'ed, but you then throw them
away.

These macros will not only find whether you are not preserving a
register—they will also find whether you have cleaned up the stack
properly. If you have not returned SP to its previous value, then none of
the checks should pass. Test SP first so that if it fails, you think of the
stack frame.

Check Registers

The program example below illustrates CHECK_STACK.

if DEBUG
STACK_OFF EQU 16
else
STACK_OFF EQU 0
endif

CHECK_STACK STRUCT
 csFlags dw
 csBPret dw
 csDI dw
 csSI dw
 csBP dw

122 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 csSP dw
 csBX dw
 csDX dw
 csCX dw
 csAX dw
CHECK_STACK ENDS

RegEntry MACRO
if DEBUG
 pusha
endif
 endm

RegCheck MACRO r
if DEBUG
 pushf
 push bp
 mov bp, sp
irp reg, <r>

ifidni <reg>, <sp>
 cmp sp, [bp + csBP]
 TRAPne
else

; bp is special - you have to use the value on the stack
ifidni <reg>, <bp>
 push ax
 mov ax, [bp + csBPret]
 cmp ax, [bp + csBP]
 pop ax
 TRAPne

else
 ; Do the rest of the registers
 ; including al, ah, ..., dh
 ...
endif

endm
 pop bp
 popf
 add sp, 16
endif
 endm

 123 No Bugs

func proc near
 RegEntry

 ; Get the passed in parameter
 mov bp, sp
 mov ax, [bp + STACK_OFF + 2]
 ...

 RegCheck <di,si,bp,sp>
 ret
func endp

• Registers that have random values returned in them. These are used by the

function and, depending on the code executed and values determined, hold
various values on return. In most functions, CX and DX fall into this
category.

These registers can be dangerous because there is usually a relationship
between their final value and the return value of the function. If DX is
usually equal to AX, then if another function uses DX instead of AX, you
will only intermittently see a bug.

To avoid this problem, trash the registers that are used by the function and
not restored. Do this with a very simple macro that places a specific value
into all the trashed registers. You can then set this word to variously be 0,
7FFFh, and FFFEh. If you run under all three values, then the odds are
pretty good that no other function is depending on the return values in the
functions.

TrashReg

The program example below illustrates TrashReg.

TRASH_WORD EQU 7F7Fh

TrashReg MACRO r
if DEBUG
 irp reg, <r>
 if (type (reg)) EQ 1
 mov reg, TRASH_WORD SHR 8

124 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 else
 mov reg, TRASH_WORD
 endif
 endm
endif
 endm

func proc

 ; function body
 ...

 TrashReg <cx,dx>
 ret
func endp

• Registers that will change in a function but will always return with a

specific value. For example, if you have a function that fills a buffer with 0,
then AX may always have a value of 0 on return.

These registers should not be trashed. They have a known, constant value
on exit. It might even be useful to the calling function to make use of this
value. In this case, you need to assert that the register is set to this constant
value.

ConstReg

The program example below illustrates ConstReg.

ConstReg MACRO reg, val
 pushf
 cmp reg, val
 TRAPne
 popf
endm

Creating local variables

Local variables are often a source of errors in assembly language programs.
When you add a variable or change its size, you might introduce errors. One
of the code paths might not eliminate the new variable from the stack before

 125 No Bugs

returning. Another code path might reference the old location of a variable—
the location used before the new variable shifted everything in the stack.
Finally, you do not have the capability, as you do in C, to initialize your local
variables.

We solve these problems by creating a struct that holds your local variables.
Then, for a function, substitute the size of the struct to create room for the local
variables. When you return, add the size of the struct. Adding or subtracting
local variables will then cause no problems due to the size change.

We also set BP to the base of the local variables. You can then use the struct to
access all the local variables. This has a few advantages.

• If a local variable moves in the structure, you are still accessing it at the
right location. You do not need to go through and change all [bp + 8] to [bp
+ 10], [bp + elem] will continue to work.

• If you remove a local variable, you will know at assembly time whether
you are still using it. Because the variable has been removed from the
struct, code that is still accessing the element will fail to compile because
the element has been removed.

• This ensures type-checking to the size of the variable. The assembler will
complain if you try to move from a word-size register to or from a byte-size
element in the struct.

In debug mode, you also fill the local variables with a FILL_CHAR. This lets
you catch any use of uninitialized local variables. At the same time you should
check to see whether you have enough stack. Because many assembly
language programs set-up and their stack in their own way, checking for stack
underrun is not shown here. However, you should add the stack checking
code in.

Local Variables

The program example below illustrates the use of a struct for
local variables.

CreateLocals MACRO size
; Be sure you stay word aligned
.errnz (size and 1)

126 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

; Make the stack space
 push bp
 sub sp, size
 mov bp, sp

; Fill it if in debug mode
if DEBUG
 pusha
 push ss
 pop es
 mov di, bp
 mov cx, size SHR 1 ; Word aligned
 mov ax, FILL_WORD
 rep stosw
 popa
endif
endm

FreeLocals MACRO size
 add sp, size
 pop bp
endm

; Using the macros
LCL_FUNC STRUCT
 var1 dw
 var2 db
 _fill db ; To stay word aligned
LCL_FUNC ENDS

Func proc
 CreateLocals <size LCL_FUNC>

 ; the function
 ...

 FreeLocals <size LCL_FUNC>
 ret
Func endp

 127 No Bugs

Wrapping it all together

With all the above tricks, it can get a little confusing. You need to handle
checking preserved registers and creating and freeing local variables both on
entry and exit of the function. You also need to trash some registers, assert
others, and check some others for constant values.

The following stub shows how to order all of this. The local variables have to
be created and freed inside the register checking. On exit, you should trash
first—lest you check a register you are also trashing. You then do asserts before
finally checking the preserved registers.

Complete Function

The program example below illustrates the use of all the
assembler specific tricks.

LCL_CF STRUCT
 cfVar1 dw
 cfVar2 dd
LCLCF ENDS

CompleteFunc proc

 RegEntry ; Save for RegCheck
 CreateLocals <size LCL_CF> ; Create the local vars

 ; Body of the function
 ...

 FreeLocals <size LCL_CF> ; Free the local vars
 TrashReg <bx,dx> ; Set to TRASH_WORD
 ConstReg cx, 0 ; Should always return 0
 AssertVar <ax> ; Should point to buf
 RegCheck <di,si,bp,sp> ; Be sure preserved
 ret ; We're done
CompleteFunc endp

128 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 12

THE TESTING PROCESS

So you've written the program, and it works. So what comes next? You ship it!
Just kidding - that was the old method. This chapter, and the following one,
describe the second half of creating a program - the testing process. These
chapters are as critical to delivering a good product as the coding process itself.

These chapters will lay out how your testing process should work. Without
these practices, you will be left with a program that may look good, but is
unusable due to the number of MFUs still in it. So what is the process?

It's very simple; you now have to go find and remove all of those MFUs you
put in the code. No matter how good a job you did trying to write bug-free
code, you will have bugs. Your entire testing process depends on whether or
not you live by that philosophy. If you do not approach testing as the process
of finding MFUs that you put in the code, then you will not find them.

Developers and testers

Most developers, after writing their code, hope that no bugs will be found.
After all, their fun is writing the new code. Tracking down and correcting
bugs, and introducing no new bugs into the system, is generally a very painful
process. When bugs are found, developers are generally upset to have them
brought to their attention. If the developers approach bugs this way, though,
you might still ship a solid product.

If testers take this attitude, though, you are guaranteed to ship a buggy
product. Testers must take the approach that if they don't find bugs, they have
failed. They should go home upset that they have had an awful day. If they
find bug after bug, they should go home happy with a bonus in their pocket.

To repeat: The job of the test group is not to certify a product bug-free. The job
of the test group is to attempt to find all of the MFUs in a product. Every day,

 129 No Bugs

testers should strive to find a new approach that will break the product they
are testing. A good tester is the ultimate cynic—no matter what a developer
does, the tester will find a way to break it.

Testers also verify that the product works as advertised. As the marketing staff
busily sells the upcoming product based on its new features, testers must check
that each feature is in the product and that it works as expected.

Warts and all

Bugs are in there. The testers' goal should be to identify every last one of them.
Their job is to give us a complete picture of the program as it presently exists.

You might decide not to fix some of the bugs, but you ought to KNOW of every
bug that exists before shipping. If you don't know what bugs are in your code,
then some nasty bugs are almost certain to show up after you ship, and that
leads to the "fix-disk of the week" syndrome, where you ship out a fix disk
every week to fix some bug that a user found. This syndrome usually
perpetuates itself. As you slowly ship fixes for all of the original bugs, you
start getting reports of bugs introduced with the fixes.

Setting up the process

Fortunately, it's relatively simple to set up a process to find the bugs in a
program. All it takes is time and money. Accept the fact that testing is a cost of
developing software, and invest in the process.

This does not mean that you have to invest an unlimited amount of time and
money. Just as it is impossible to write bug-free software, it is also impossible
to find every last bug. (It's nice to know the testers are as fallible as the
developers.) However, you need to allocate enough resources to the testing
process to ensure that you have a very good chance of finding all significant
bugs.

Adding testers towards the end of a project works about as well as adding
extra developers at the end of a project—that is, it's usually counter-productive.
This holds for the same reason that 9 women can't have a baby in 1 month.
Testing software requires as much skill as writing software. It requires specific
training and knowledge. And mostly, it requires time over the entire
development process.

130 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

And, like developing, testing is partially an innate talent. Some people can sit
down at a program and, almost just by looking at it, cause it to "crash and
burn" (that's a highly technical term that means the program won't work).
Others can spend days on it and never find a bug.

Generally, you should allocate as many resources to testing as you do to
development. One tester cannot test for 10 developers. By the same token, one
developer can't keep 10 testers busy. The actual ratio of testers to developers
might vary but generally, for each 1 - 4 developers busy putting MFUs in the
code, you need a tester finding them.

The plan

Let's set up a scenario. Let's pretend the last time you shipped a program, you
had one dedicated tester, who was assisted by everyone in the company testing
the week before you shipped the program. The original program and
subsequent bug fixes were so bad that most users were better off before they
received the update.

Now management is so desperate—really desperate—that they will even try
debugging plans that make sense and cost money. They let you have the
resources to create a decent test process.

First, you need to create a testing plan. Although software development occurs
best in an unstructured environment, testing is at the other end of the
spectrum. It requires significant structure and planning. The testing plan must
not hold up the development process. The testing process should work with
the development process on a day-to-day basis. Testers must try to complete
their job as developers finish theirs. While developers design and code their
basic system, testers should determine how they are going to break the
program.

Testers should be brought into the development process before the first code is
released for testing. They need to know what they will be getting so they can
be prepared to test it. In the case of a new product (as opposed to an update),
testers might very well have to start preparing the day the developers start
designing.

The testing plan determines what, how, and when you will test. It includes the
process whereby testers will report bugs to developers, developers will fix

 131 No Bugs

bugs, and testers will verify that they have been fixed. It includes a list of the
tests to be written and the test writers.

You need to lay out what the program does and how it will be tested. A
program appears different to a tester than it does to a developer (and it appears
different from both of those to a user). The test plan basically provides a
specification of the program from the tester's point of view. This allows the
tester to create a list of items to test.

You need to determine the testing methods. This includes figuring out the
tools you will test with, including those that might not exist and which you will
have to write. This also covers the systems that you need to test on.

The test plan needs criteria to judge the product by. How do you know when a
product has been tested enough that you can ship it? How do you know
whether a bug is serious enough to delay shipping? As the deadline to ship
approaches, the pressure become intense to declare all known bugs acceptable
and simply ship it. The only way to avoid this is to come up with reasonable
objectives early in the process, before pressure mounts. Changes that occur
during development might change the approval criteria some, but at least you
have a strong baseline to work from.

Automation
When the testers sit down to design their tests, they should concentrate on one
thing: automation. If at all possible, every test should be fully automated,
giving the program input and checking its output, flagging the tester only if an
error is found.

Generally, automating a test takes more time than running the test manually
once or twice. Often, automating a test takes more time than running the test
manually even 50 or 100 times. However, testers should still automate as may
tests as possible. Any given test will be run hundreds of times before the
product ships. If the test is automated, not only do you eliminate a tester
missing an error, but it becomes very easy to run the tests again and again and
again. By the end of the project, the investment in automating your tests will
pay off many times over.

There is an even more important reason for automating the tests. Before word
processors, a document had to have serious errors before someone would

132 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

consider retyping it. With the advent of word processors, that someone thinks
nothing of reprinting a 100 page document to correct a single phrase.

By the same measure, if you want to rerun a series of manual tests, you need to
have a very good reason to spend the time and money required. However, to
rerun a series of automated tests merely requires that someone start them. In
fact, because the testers spent the time writing them, they run the tests
whenever possible.

Every time a change is made to the program, no matter how small and
insignificant, you can run the automated tests. Towards the end of the project,
when only major bug fixes are allowed, this can become critical.

If done right, testers spend most of their time developing automated tests for
the first time and very little time actually testing. At the same time, test
systems are almost constantly running, performing their tests automatically.

Bug reporting
The bug-reporting process should also be automated. When a bug is reported,
as much information about the bug as possible should be conveyed to the
appropriate developer.

A program that reports all pertinent information about the system the bug was
found on is a very useful feature. Among other things, it should have a copy of
the system's config.sys and autoexec.bat files, motherboard and ROM-BIOS
manufacturer, and so on. It should tell you anything that could be relevant to
the bug.

The ability to write information to a log file is another useful feature to include
in debug versions of the program. When a bug is found, the contents of the log
file will often provide all needed information. Although this is not an
appropriate feature in a final product, it is very valuable in beta programs,
especially if it can be turned off (for speed).

The tester needs to recreate the bug before passing it on to the developer. If the
tester can't recreate the bug, then neither they or the developer have no way of
verifying that it has been fixed.

If the bug occurs on only one system, the tester and developer will have to use
that system. This can be a problem if the system in question is located at a beta

 133 No Bugs

site. In that case, if the bug is serious enough, the computer will need to be
shipped to the development site.

A developer needs to inform the tester when a bug has been fixed. This
communication channel should be automated (electronic mail is great for this).
The tester can then test to see whether the bug is truly fixed. The tester is the
one who determines whether the bug has really been fixed.

If there is no automated test to find the bug that was fixed, then the tester
should strongly consider adding it to an existing test or writing a test to check
for the bug. If it happened once, it could happen again. This "regression
testing" can be crucial. Many times, fixing a bug will introduce a new bug.
When fixing the new bug, another developer might inadvertently reintroduce
the old bug.

The bug database
Tracking bugs is as critical as finding them. If a bug is found but never fixed,
then the program is no better off. If a developer determines, after a week of
work, that a bug cannot be fixed, you do not want another developer spending
a week rediscovering the same thing.

If two people report the same bug, you do not want two different developers
fixing it. If a bug is fixed and then reappears in another, later version, referring
to the earlier report should point the developer to the actual bug.

A bug database is more than simply a database on a computer. It is part
communication program, part process, and part database. It is the means by
which bugs are followed.

Although a one-person effort can simplify a lot of this process, the actual
process should still exist. A developer/tester working alone still needs to track
bugs.

If at all possible, a single person should enter all bugs into the system. This
person is the Bug Master, one of the most thankless jobs in the entire
development process. Individuals who find bugs should e-mail the bug
reports to a bug alias (assuming you have e-mail).

All developers and testers on the project should be on this alias and should
read all e-mail to this alias. Many times, a developer or tester will know the

134 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

answer to a bug and can e-mail a response to the sender and Bug Master, thus
saving a lot of time.

This bears repeating. The job of the developers is not to wait to be assigned a
bug. The job of the developers is to help find all the MFUs they put in the
program. Getting a copy of every bug report, even if most of them are
discarded after reading the first line or two, is critical to this process.

Although everyone reads the e-mail to the bug alias, the Bug Master is the one
who acts on it. He or she enters the bug in the database. Entering a bug in the
database should include the name of the developer and tester the bug is
assigned to. This should then generate e-mail to the them as well as to the
person who reported the bug.

When the bug is assigned, it is also assigned a "severity." This severity should
generally be a number within a small range that spells out very clearly how
critical the bug is:

Level 1 The program causes catastrophic damage (for example, it
formats your hard drive)

Level 2 Some major functionality doesn't work (for example, you
can't print)

Level 3 Some minor functionality doesn't work (for example, you
can't print to a file on another drive)

Level 4 The program works but something is wrong (for
example, spelling mistake, caps lock key ignored)

Level 5 A design flaw (for example, call printing print instead of
type)

Level 6 A suggestion for the future (for example, allow wild
cards when specifying files to back up)

Categorizing by severity is important for two reasons. First of all, it allows a
developer to prioritize bug fixes. Second, as the ship date approaches, only
bugs assigned lower severity will be fixed. (Because fixing a bug always leaves
the possibility of introducing a new, and potentially more serious, bug, you
need to be very careful as your ship date approaches. Although a product

 135 No Bugs

should ship with no Level 1 or Level 2 bug, a Level 3 bug may be left if it
would be dangerous to fix it at the last second.)

You can always change the assigned severity of a bug. However, don't change
all bugs from Level 1 and Level 2 to Level 3 simply so you can ship. This
grading of levels is important so that management can determine whether a
product is approaching a state where at which it can be shipped.

Once a bug is fixed, the developer needs to enter details of the fix into the bug
database. This step provides a reference to be used in case the bug is ever put
back in. It is also useful when trying to solve a similar bug.

The developer then e-mails the tester and Bug Master that she or he believes
the bug to be fixed. At this point the bug is assigned to the tester. It is now the
responsibility of the tester to determine whether the bug has been eliminated.
Ideally, while the developer was fixing the bug, the tester was writing an
automated test to check for the bug.

If multiple developers are working on the same program, then it is usually
more efficient to "build" the program once a week (sometimes more or less
often) and hand that build over to the testers. (A build consists of taking the
code everyone has checked in and creating a version of the program for
everyone to use and test.) The testers can then test against this build.

Regular (usually weekly) builds give you two big advantages. First, when
testing to see whether a bug has been fixed, the tester is testing against all the
changes made that week, not just the one small change made to fix that single
bug. Second, the entire suite of automated tests can be run against the new
build, allowing the testers to determine whether the bug fix has broken
anything else.

Finally, if the tester determines that the bug has been fixed, then he or she e-
mails an announcement to the Bug Master and developer. The bug is then
marked as fixed in the database.

Sometimes a developer will determine that a bug cannot be fixed. This
decision might be reviewed by management, but if the final decision is that the
bug can't be fixed, it is then marked in the database as "can't be fixed." In this
case, it is even more critical that the bug be fully documented in the database
because it will most likely be reported again.

136 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Finally, time constraints might not allow some bugs to be fixed. Bugs at Level
5 and Level 6 will often not be worth the time investment. Even if worth the
time, there might not be enough time left before shipping. In either case, these
bugs should then be resolved as postponed. The list of bugs that were
postponed then becomes part of the proposed feature list for the next version.

Throughout this process, the Bug Master (as well as developers and testers)
need to periodically check the entire database for duplicate bug reports. At
times she or he will also find open bugs that have been resolved or that can't be
resolved.

All bugs that are assigned are considered open. This is the bug count that
matters. (Having 1000 postponed bugs that are really feature enhancements is
not a terribly relevant number. Having 1000 Level 1 & 2 bugs is a sign of
serious problems.) This bug count needs to drop every week. If this count gets
out of control, then your ship date will slip further and further into the future.

Although at certain times the count will climb (for example, shortly after a beta
release), it must always be brought back under control. The actual number
depends on the severity of the bugs, the number of developers on the project,
and the stage of the development.

However, the bug count of serious items for the parts of the program that are
complete should be in the single digits for each developer. At the later stages
of the program, it should be less than four. If you have a high bug count, then
the developers have too high a ratio of MFUs to working code.

Having a lot of code full of MFUs is not of much use. If your other option is a
smaller body of working code, you are a lot better off. If the bug count gets too
high, stop new development and concentrate on killing the existing bugs. Do
not allow new development until the bug count is brought back down to a
reasonable level.

And keep in mind that you cannot drastically change the number of bugs a
developer fixes in a day. If the count keeps moving upward, even in full bug-
fix mode, you are screwed. If the count moves downward at a relatively
constant rate, then you cannot plan on doubling that rate simply because your
ship date is approaching.

The testing process
The success of your testing process depends on three things:

 137 No Bugs

• Your level of organization

• The expertise of your testers

• The support of your management

With a good testing process, you can deliver good software. Without it, you
haven't got a prayer; with each buggy update, fewer of your users will stay
with your program, and more will switch to a competitor that does do a good
job of testing.

Internal Testing

A program is tested by several groups. The developers themselves do some
testing, merely by running the program to see whether their new feature works
if nothing else. The test team uses both automated and manual tests. And
finally, users test the program in a beta test.

This section discusses the second group; the tests performed by the internal
testers. Although the testing group is also responsible for managing the beta
test, this section discusses the actual testing performed by the testing group.

The testers are divided into two groups:

• Those with knowledge of the source code (white box). These testers look at
the source code, and based on the code, write test programs that will try to
break the program.

• Those with just knowledge of the product as a power user (black box).
These testers know nothing about the internal logic of the program.
Instead, they design tests based on the knowledge a power user of the
program would have.

White box testing
Internal testing is generally the only source of white box testing of a product.
This testing is performed by programmers who read the source code and,
based on the actual source code, design a set of tests. Where the TRAPs and
IntTests made sure that all code was executed, these tests attempt to insure that
all combinations of code paths are tested.

138 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

White box testing cannot be performed by the developer who wrote the code.
Any developer, no matter how good, has blind spots. After all, the developer
put all of those MFUs in there in the first place.

Although white box testing should exercise the common code paths, this is the
least important of its jobs. After all, if a code path is common, the black box
testing will surely test it. Instead, testers should look for code paths that will
be exercised very rarely.

Ideally, tests will be written for all possible code paths. However, with a
limited amount of time and people, this is usually not possible. In that case,
the testers have to decide which code paths to test. You have two basic groups
of tests.

First, you want to write tests that test the basic functionality of the program.
This test should determine whether the basic system, including all critical
paths, works. This is necessary to determine whether the developers have
made a change that makes it impossible to test anything because the basic
system is hosed (another technical term that means you can't do anything with
the program).

Second, you want to write tests that test code paths you think have the best
odds of breaking. This is where the test group has its best opportunity to break
a program. Also, in the course of looking for code paths to break, a tester who
finds something wrong can bring it to the attention of the developer. This code
review is also a way to find bugs.

Black box testing
Black box testing is the opposite of white box testing. The tester has no
knowledge of the internal code making up the program. It is critical that black
box testers truly be clean. By clean, the testers must have no knowledge of the
internal workings of the program.

In most cases, the best way to insure that black box testers are clean is to use
nonprogrammers to do this testing. Even if they see code, they have no idea
what it means. It also lessens the likelihood of their learning about the internal
logic from a developer.

Black box tests are designed by a power user of the program. Like the white
box testers, two basic groups of tests should be written. First are the tests of
common functionality. These are designed to verify that the basic program

 139 No Bugs

works. Second, once again, are the uncommon code paths. In the case of black
box testing, there is no way to know which code paths are shakier than others.
The most important approach is to give an unusual response to prompts.

For example, when prompted for a filename, try 1 and 8 character names. Try
files that are read-only. Try bad files. Try files that don't exist. In other words,
try everything except a normal file.

The uncommon code path testing is not as critical in black box testing because
the beta test will accomplish much of that. More important in this testing is to
add tests for bugs found in the beta process.

If you track the initial black box tests, you will find that some testers wrote tests
which all succeeded, some wrote tests that sometimes failed, and some wrote
tests that almost always failed. Use the people in the last group to keep writing
tests, and have the people in the other groups write tests for bugs reported by
beta sites.

Designing the tests
Tests generally have a longer lifespan than the code they test. Although a
program may be completely rewritten between versions, the user interface
stays somewhat constant. Because many tests are written to exercise the user
interface, the tests are still good, or easily modifiable.

Also, when a program is converted to another language (human, not
programming), most of the tests are still good, although they might have to
change the actual keystrokes input and the text in the results to match the new
language. Programs, like test routines, have to be written with an eye on
international support.

Testing is broken down into "test suites." A test suite is nothing more than a
group of test cases that are run. One suite would be the basic functionality test
that determines whether the basic program works. Another suite could be all
of the printing test cases.

Two test suites can have some crossover in test cases they use. The test cases
are the actual tests. The test suite is designed to perform a set of tests to check
something. If possible, a test suite should include other test suites. If possible,
you should have a test suite for each basic group as well as a master suite that
includes all of these suites. The master suite would then include every test.

140 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

A test case tests one feature in a program. A test case is a test program
composed of a set of test scenarios. By running a test case, you should be fully
exercising the feature with all of the tests written for it. If the test case for
opening a file passes, it has passed all of the tests you have written for opening
a file. A test case should be as comprehensive as possible—it fully and
completely tests one feature.

A test scenario is a part of a test case. Each scenario tests one specific way of
exercising the function. For example, for opening a file, one scenario would
pass in a filename that doesn't exist. Another would pass in a file that was bad,
and so on. A test scenario should be as simple as possible—it tests one specific
code path.

The tests should generate logs of the tests they make and, if the tests fail, the
results of the failure. These logs should be as clear and simple as possible. The
best logs merely say tests completed successfully if there were no errors.

The testing group should design tests to exercise the software to its limits. It is
not the job of the testing group to randomly use the software. They should,
with full knowledge of the product, design a set of tests that pushes the limits
of the software. For each test, they should have a predefined set of inputs that
corresponds with an expected outcome.

When completed, the automated tests are a smoothly running product. They
perform their job well and return their results clearly. They are easy to use and
require minimal user interaction. A professional test group provides a
professional series of test suites.

Running the tests
The very first test is a test designed by the testers that the developers
themselves run. Until the software passes this test, it is not handed over to the
testers. The purpose of this test is not for the developers to do the testers' job
but to insure that, after bug fixes, the program works. Enough of the program
main features needs to work well enough to allow the testers to actually do
something.

This test comprises the tests developed by the white box and black box testers
to test the main code paths. As more of the program gets working, this initial
test may be enlarged. However, at no time should it include capabilities not
yet in the program. The test is not to determine whether something works for

 141 No Bugs

the first time but to insure that basic functionality that checked out previously
has not been broken.

This test must be completely automated. Simply put, a developer is not likely
to run a manual test once a week. However, she/he is likely to run a program
that will report if the program is working as expected.

The best way to approach this test is to build the product once a week. Once
the product is built, including everyone's changes, the automated test is then
run against the program. If the program passes, it is given to the test group. If
not, the program is fixed by the developer or developers who broke the build.

The process of building the program and running the basic test can be done by
a developer, a person dedicated to this function (a builder), or a tester. The
program may be built and then delivered to the testers to run the basic test.
However, if the basic test fails, the sole job of the developers is to fix it. Until
that happens, the developers do not do any other development.

Once the build passes the basic tests, it is turned over to the test group. The
testers then run their tests, both automated and manual, on the build. The first
tests should be those that test whether bugs that were reported fixed have truly
been fixed. If not, then the bug is returned to the appropriate developer.

Next, if new features were added, the tests developed for the new features
should be run. Because test programs are written concurrently with
development, the programs to test new features should be ready as soon as (or
before) new features are completed.

This gives developers immediate feedback on how well they have
implemented the new function. Instead of waiting weeks or even months, long
after they have forgotten all of the details of the implementation, they get
feedback within days.

Finally, the remainder of the tests should be run to ensure no new bugs were
introduced into the program. This is where automated tests really pay off.
Each week, when a new build is delivered to the testers, all of the old tests are
rerun again—at minimal cost.

Testing platforms
The testers should be sure they test under actual end-user conditions. If most
users of a product have 80286 machines with 640K of RAM, testing exclusively

142 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

with 50 MHz 80486 systems with 8M of memory is going to allow a lot of
problems to slip through.

It's important to run the full set of tests on a least common denominator of
systems. The tests must pass on every system the program might be run on,
not simply the hardware, but also the software it will run with, including
networks, TSRs, and so on.

If you use special monitors, test the program with each. Look for combinations
that cause trouble. And look for other software packages that might conflict
with yours. Conflicts can come from sources other than TSRs and device
drivers. Under Windows, your DOS application might be incompatible with
another application that is running in another DOS box at the same time.

Be sure you test with various operating system environments. In the case of
DOS, you should test with DOS loaded both low and high. Test your program
loaded both low and high (in a UMB). You also should test your program in a
Windows DOS box—which will catch some illegal memory accesses.

If your product is network aware and runs on several networks, it is critical
that you test it on several networks. Testing a network program on only one
network is a good way to insure it will blow up on every other network out
there. Use at least three radically different networks. If you talk to different
network APIs depending on the network, test at least two different networks
with each API.

If you are writing a Windows application, be sure it works in both 286 and 386
mode. Test 286 mode on both a 286 and 386. In each case, Windows is
significantly different. And if your program can run in real mode, then test it
in real mode. If it's not important enough to test it in real mode, then you are
doing your customers no favors by allowing it to be run in real mode.

As object linking and embedding (OLE) becomes more prevalent in Windows
applications, compatibility with other applications will become more
important. You will start to see bugs where your program blows up only when
it has an OLE connection to application B, and application B starts a dynamic
data exchange (DDE) connection with application C.

If you are writing a DOS application, be sure it runs on DOS and under
Windows (286 and 386 modes). Furthermore, even if it is not network aware,
be sure it runs fine if your system has a network loaded on it, both as a

 143 No Bugs

workstation and as a server. These environments can make a big difference to
your application.

Work on bringing the system to its knees. A common test for software using a
network is to have everyone on the net perform the same function at the same
time. The real test isn't 'Can one user retrieve a record over the net?' it's 'Can
200 retrieve a record at the same time?'.

Testing, testing
Testers are essentially super users—not power users who know the program
well, but users who can act like a power user one second and like a novice the
next. The testers ensure that a program not only works as advertised; they also
ensure that it is useable. A bug-free program that is too difficult (or weird) to
use is of no use to anyone.

Testers are also the users' advocates to the developers. The testers will first
notice that the way the program works confuses a user. They are the ones who
will first use the system to see what happens.

Just as the tricks for developers in the earlier chapters attempt to make bugs
immediately apparent, so do the tests. Each week when a new build is released
to testing, an immediate and thorough test for bugs begins. Reports of any
bugs identified are immediately e-mailed to the developers.

And it all relies on the testers being as good at finding MFUs as the developers
were at putting the MFUs in the code in the first place.

The Beta Test

A beta test is not a test process. A beta test is not a substitute for any of the
other parts of the test process. A beta test by itself will not find most of the
bugs in a program. Many companies try to use a beta test instead of a proper
internal test program. This does not work.

At the same time, a beta test is essential. No matter how good your internal
test system is, no matter how talented your testers are, no matter how safe your
developers, you will produce code with bugs in it. And the only way to find
those bugs is to have a beta test.

144 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Although everyone has a beta test nowadays, most of the tests are not very
effective. So what what do you want a beta test to accomplish? Four critical
items:

• Test your program on a diverse set of hardware platforms. Of the 80
million PCs in the world, 79,999,998 are each slightly different from all of
the others. (There are two in Iowa that are completely identical.) A beta
test allows you to test your program on a much wider selection of
hardware than you ever could internally.
This diverse testing is critical. As hard as companies try to use a diverse set
of hardware for internal testing, the set is in fact remarkably similar. Only
by using existing platforms across the United States and the world can you
have a chance to be sure your program will run on any hardware
combination.

• Second, test your program running with various other programs. Again,
aside from the two PCs in Iowa, all the computers in the world run a set of
TSRs, device drivers, and so on that is slightly different from all of the other
computers in the world.
Add to this a mix of software products. (Some programs in use are so old,
they haven't been updated since the invention of hard drives, networks, or
heirarchial file systems yet. Needless to say, some of these programs have
trouble with the concept of 640K of RAM and freak out if they see UMBs.)
This combination of software can cause a completely safe operation to
malfunction on some systems. You might actually have to program around
bugs in other programs to solve some of these problems. Only a beta test
allows your program to be tested against a truly diverse set of
combinations.

• A beta test allows developers to get feedback on a program. If a feature is
difficult to use, beta testers will let you know. If a very important feature is
missing, they will let you know. If a feature gets in the way and is not
needed, they will let you know.
This gives you feedback before you make a final ship of the product and it
is too late to change it. One missing feature in an otherwise outstanding
product can drastically reduce sales. One bad feature can ruin a product's
usefulness.
Developers are interested in creating a product, and testers are interested in
finding bugs, but users are interested in using it. Beta testers are trying to

 145 No Bugs

use the software to solve problems. A well-written, bug-free program is
not necessarily useable. Usability problems are as serious as a bug that
makes a program difficult to use.

• A small sub-set of beta testers write programs that interact with your
program. These users need an advance copy so they can ship an update to
their program when you ship yours.
This holds not simply for operating systems such as Windows and OS/2. It
holds for word processors if someone is dependent on your file structure.
It holds for programs that have an API you can talk to. It holds for
Windows applications that support DDE and OLE.
This last group is special for two reasons. First, this group is a subset of the
entire beta test. Second, depending on the difficultly of incorporating the
changes necessary due to the changes in your program, these people might
need to get a copy before the regular beta test.

When to beta
If you look at the first two reasons to have a beta test, you are probably
concerned with bugs due to very subtle influences. Testing for these influences
should wait until you are near the end of your development process. If the
program changes significantly, these subtle influences can act differently. You
are not concerned whether an early build of the program won't work with a
certain TSR—only if the final build won't.

If you look at the third reason to have a beta test, you are concerned with how
the program acts as a whole. Generally, the feedback for a beta test will not
uncover a reason to throw away most of the existing work. Instead, it will
uncover small inconsistencies. Or it will find that some users use the program
in different ways or under different circumstances, necessitating changes for
those circumstances. Again, a relatively complete product is needed to get this
type of feedback.

The beta test should come relatively late in the process. Many companies make
the mistake of starting the beta early to hasten the product's ship date. A beta
test will not hasten the ship date (although it might prolong it).

There is no reason to start a beta test too early. In fact, there are numerous
reasons NOT to start a beta too early. First of all, even though labeled beta, the
quality of the product will influence opinions on the final product. (Microsoft

146 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

C 7 was labeled a buggy product due to its early beta state even though the
final product was rock solid.)

Also, if a beta period lasts long enough, the beta product will start to be
considered a released product because all of the opinion-makers have been
working with it for so long. If the product is still buggy or has bad
functionality, the product can fail before it is ever released.

On the flip side, you should also not wait too long. Initiating a beta period one
week prior to shipping the final product is worse than useless. Not only is it no
help, but by telling management you had a beta test (and this is NOT a beta
test), they might think the product is ready to ship.

The purpose of the beta test is very simple: Developers are more ingenious at
putting MFUs in the program than your testers are at finding them (sorry,
testers). Those MFUs are in the code—you know they are—and you want to
find them.

So how do you decide when to start the beta? The first step is to make yourself
self-hosted if possible. If you are writing an operating system, the developers
should be running the new operating system to develop it first. If you are
writing a compiler, the compiler should be compiling itself first. (For non-
systems software, self-hosting is not always possible—how many developers
use a spreadsheet?)

Also, you should have an internal alpha release wherein a small number of
users, preferably within the company developing the product, use it. That
way, a small group of users (not testers) are actually using the product.

Ideally, these users will say that aside from a few bugs, the new product, in its
present state, is preferable to what they are presently using. Once you reach
this point, after you fix the minor bugs that were found, you are at the perfect
stage to make your first beta release.

If your alpha testers are not able to use the program, there is nothing to be
gained by having a larger group that cannot use the program. As long as the
alpha testers are reporting significant bugs, you don't need more people
reporting the same bugs.

The best guide is that internal testing is finding a minimal number of bugs and
the developers will be done coding within another month or two. In other

 147 No Bugs

words, you need to get some bugs reported within the next month, or some
people won't have anything to do.

When to ship
You're ready to ship your final beta when you send out a beta and, subsequent
to it, you did not have to make any changes to your core code—no changes to
any part of the code that is central to the system.

A development group that does a very good job writing bug-free code will
generally have one to two beta releases. (Operating system software will
generally have more because applications talk to operating systems, adding
another layer to the puzzle.) However, it's better to have additional betas than
to ship a buggy product that customers will return.

All of the beta periods except the final one can last for any period of time,
although the average will be one to two months. If you are still receiving lots
of new bug reports for an existing beta, there probably isn't much need to ship
a new one. If you have a radically new version or you have fixed a lot of
critical bugs, it's probably time to ship another beta.

The final beta period should last a minimum of at least one month and really
should be two months unless you are getting no reports of bugs. The longer
you wait, the more unusual combinations the program will be put through out
in the field.

If you make final changes that you consider safe but that do touch the core
code, you might want to consider shipping a limited beta. Ship copies to those
sites that have found the most problems.

You might also want to consider beta testing through CompuServe or another
bulletin board service. If beta testers can download the beta, then there is no
cost to you for having some intermediate betas in the course of the beta test.
It's hard to believe, but people will actually take the time to download 8 Mg of
files just to test a program for you.

Selecting beta sites
In our criteria for beta sites, another important feature is diversity. Two users
with identical computers, software, and habits are not any more useful than
one. Two radically different users with different systems and software are.

148 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

As the beta progresses, track your beta sites. If a beta site never reports any
bugs, they are of no use to you, and you shouldn't bother to include them the
next time you do a beta. There is an exception for beta sites who need advance
access to your product for a product of their own. Even if they don't report
bugs, they need the beta.

Beta sites that report bug after bug need to be rewarded (with a plaque if
nothing else). If, after your final beta, you make a change that "sort of" impacts
the core code, you might choose to send a post-beta out to just these sites.

A number of companies now seem to seek to have a larger beta program than
any other. After a certain number of sites, there is no benefit in gaining
additional sites. Pick a number, and try very hard to not go over it. For a
general-purpose product that sells millions of copies, I see no advantage in
having more than 5000 beta sites.

For a vertical market application with 1000 total customers, 50 beta sites is
more than enough (and 20 might be enough). Pick the right beta sites. Picking
20 people who don't actually use the beta is of no use.

Track who reports bugs on your existing products. Ask (beg if necessary) those
in the top 1 or 2 percent to be beta testers. Those who call up with good
suggestions for future products should also be beta test sites.

You are looking for quality, not quantity.

Handling bug reports
When a beta site calls in a bug report, the beta program is actually providing its
value. Equally important, during this call the beta tester receives feedback that
will encourage or discourage him or her in the future.

When a bug report comes in, a tester needs to check whether the same bug has
already been reported. If it has not, the tester needs to insure that enough
information has been reported to duplicate the bug. An incomplete bug report
is of no use.

If the beta tester calls in the bug report or if a tester needs to call the beta site
for additional information, the tester must make the beta site feel appreciated.
Thank them for finding the bug; don't yell at them and tell them that now
you'll have to stay at work all night because of what they found.

 149 No Bugs

Let them know that you appreciate their time in testing and reporting the bug.
Without this positive feedback, a beta site will probably not report the next bug
they find. Make them feel like an important, appreciated member of the
development team.

The bug then needs to be entered into the bug database. This allows it to be
assigned to a developer to be fixed. Special care should be taken at this time to
insure this bug has not already been reported.

You might also want to have a tester reproduce the bug before entering it into
the database. A number of the reported bugs are either from earlier versions or
were not bugs at all. Some others are specific to the hardware the user is using.
In any of these cases, there is no point in having the developer attempt to fix
the bug until it can be reproduced.

When a bug is resolved, have a means of letting the beta site know it was fixed,
and again thank them. If they were the first to report it, let them know that too.
If a beta site thinks you are ignoring their reports, they will give up. People are
amazingly willing to help us out by testing our programs. However, almost no
one is willing to do it if they think they are being ignored.

If you have a user newsletter, give awards in it to your top 10 beta sites. If you
have a user's group meeting, present the beta testers with plaques. Find some
way to show your appreciation in front of their peers. Make every user aspire
to finding more bugs than any other.

The success of your beta program rests primarily on three things: Who you get
as beta testers, how motivated they are to find bugs, and how you act on the
bugs reported.

150 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Chapter 15

SHIPPING THE PRODUCT

This chapter attempts to address that most difficult of all questions, when to
finally ship the product. I say attempt because this is the hardest question of all
to answer.

Yet it is also one of, if not the critical question. Ship too soon and the MFUs in
the program will force you to ship fix disks. Ship too late and someone may
beat you to market. At the least, you've delayed the revenue you may need to
survive.

This question is difficult because, with adequate testing (you followed the
previous chapter didn't you), you will never have no bugs. Instead, you are
trying to come up with a release that has no bugs serious enough to stop you
from shipping the program.

As you get close to completing the final beta version of your software, you will
build a release candidate. You will ship this copy as the final product—unless
a significant bug is found. (If the developers are still working on bug fixes for
the program, then you are nowhere close to the release candidate stage.)

You should put this release candidate through full regression tests (all of your
automated and manual tests). If the software passes the regression tests, then
everyone on the project, testers and non-testers should try to break the
program. They should spend a couple of days doing nothing but beating on
the product.

At this point, you need to send this "mini-beta" release candidate to everyone
in the company as well as to selected beta sites. As I mentioned earlier, send it
to the beta sites that found the most errors in the past. You might also want to
put the beta on CompuServe or another bulletin board for beta testers to
download. It doesn't cost you anything to do so, and it gets you an additional
pool of testers.

 151 No Bugs

This final test should last at least a week. If you made changes to core parts of
the program or to the file structure of its files, this test should last a month.
There is simply no way to shorten this period; it takes time for users to
manipulate the program in different ways, exercising unique combinations of
the code.

When the program has passed the tests, it is ready for release to the
manufacturer. Have "manufacturing" send you the first 10 sets of disks made.
Take those disks, and have everyone in your group install the program from
the disks and test again. Be sure that what you sent to manufacturing is what
you get back. Comparing the disks isn't good enough; you should be sure the
program runs.

To release or not to release

If the release candidate fails any of the regression tests, you must decide
whether the bug is a release-stopper. Fixing a bug can introduce a new,
unknown bug. If do you make a change, you need to take the time to repeat
the entire test cycle. You need to be totally paranoid that the fix might have
introduced a subtle, yet very serious bug into the program. If the change was
in an area of any significance, you need to send the program out to a "mini-
beta" testing group again.

Even if you can fix the bug while introducing no new ones, you are not
necessarily doing your users any favors by doing so. What you have now, with
the bug, might be more useful to them than what you can have in another
month after fixing the bug and retesting.

It is critical to look at the program as it is. Then compare it to the program you
could have in the future, with all the bugs fixed. When you compare these two
programs, it might be obvious to you which program your users would rather
have.

Making a bad choice in either direction can have serious ramifications. If you
ship too buggy a product, then you get a bad reputation and your users switch
to a competing product. If you wait, they might give up waiting on you and go
to a competitor.

If you are worried that you will lose customers either way, then fix the bugs. If
you ship, you lose customers and get a reputation for having a buggy

152 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

(unusable) product. If you ship late you lose customers, but you earn a
reputation for solid software. The good reputation will usually gain you more
new customers in the end.

This decision-making is one of the most difficult parts of the development and
testing process. The testing group needs to be involved at this point because
often only they and developers have a clear idea of the bug and its
ramifications.

You obviously need to fix some bugs; however, mandatory fixes rarely come to
light at this late, release-candidate stage. Bugs such as misspellings obviously
do not need to be fixed. Sometimes, though, while no single bug is critical
enough to merit fixing, all of them together are.

Keep in mind that no matter how well you test, you will ship a product with
bugs that you haven't discovered. And no matter how extensive the beta
testing, you might discover a serious bug after shipping. Do not keep fixing
the product to remove the final little bugs so you can ship a bug-free product.
Aiming for that goal will merely prolong the test period and deliver software
that is no better.

At the same time, don't use the excuse that "all software is buggy" to ship a
product with unacceptable bugs in it. Today's users expect to find no bugs in
their programs. At least 90 percent of your users should never notice a bug in
your product.

A final note: Be sure to test not just the builds leading up to the release
candidate, but the release candidate itself. All of your efforts have been leading
toward testing this one specific build.

Management

It is important that the testers do not report to a development lead. The testers
should report to the person in charge of the technical support group because if
the testers miss a bug, technical support pays the price. Technical support is
the department that will get all the calls from unhappy users discovering all the
MFUs you hid in the program for them to find.

If the testers do report to the development lead, then, consciously or
subconsciously, they will end up being encouraged to not find bugs—the death
of effective testing. A development lead is not happy when bugs are found. A

 153 No Bugs

development lead wants to finish development, and bug discovery prolongs
the process.

At a minimum, the testers' lead should report to the same person the
developers' lead reports to: the person responsible for shipping a successful
product. This way the testers are reporting to someone responsible for a
successful product rather than for completeing development.

If the testers are not part of the technical support group, then they should talk
to that group a lot. Technical support needs to work closely with the testers to
minimize problems in the program. It's a lot cheaper to make the program
easier to use without asking questions than to staff up technical support. Many
times technical support can find places where small and easy changes in the
program can reduce a significant number of technical support requests.

Putting it all together

All of the above leads back to where you started: The goal of testing is to
identify bugs in the program. You might not fix them all (in some cases it
would be impossible to do so), but you know what they all are.

This allows the members of the project to make intelligent decisions about
what to fix and what to leave. More importantly, it allows project management
to make an informed decision as to when to ship the new product. Without
proper testing, management is left deciding when to ship based on
guesswork—and then waiting for the inevitable bug reports to come in.

PC software development has improved greatly over the past several years.
Users have come to expect no bugs in operating systems (DOS 5 and Windows
3.1), and users see few if any bugs in these programs.

Popular software applications are also reaching this point. Lotus recently
shipped a 1-2-3 spreadsheet program for Windows and had to recall it due to a
level of bugs that would have been of no consequence two years ago. A year
from now, users will expect all of their general applications to be at this same
level of robustness. Sooner or sooner (not later), users will see a seemingly bug-
free replacement for the application they currently use. And they will buy it.

And once user's general applications are, in their view, bug free, they will
demand freedom from bugs in their specific applications. Developers writing
vertical-market or in-house applications have a only year or two to develop

154 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

good, bug-free specific applications. Users aren't stupid. If your word
processor is well designed, full featured, and bug free, and your vertical-
market application isn't, then it will be painfully obvious that it is not as good
as it could be.

Two years from now the successful software companies will have good test
procedures in place and they will use them. What they do will follow much, if
not most, of what has been laid out here—not necessarily because all the staff
read this book, but because they follow the ideas enumerated here.

Dire warning

Many companies already follow the procedures I've described in this book.
Over the next year many more will begin to. If you wait a year or two to start,
then you have have to wait another year to get the procedures to work and
turn out a properly tested product.

If you want to be in business two years from now, set up testing procedures
now. Remember, if you don't turn out a successful product, it's not just you
that might lose a job, it's everyone else in your company or division too. This is
serious stuff.

• Implement proper testing procedures—don't simply go through the
motions.

• Make use of the test results—don't ignore them.

 155 No Bugs

Chapter 16

USEFUL BUG-DISCOVERY TOOLS

Now that the rest of the book has you justifiably scared into discovering the
bugs in your code, how do you actually do it. This chapter discusses a number
of tools available in the PC market to help you out.

Unfortunately, there are not many good tools to help you discover bugs. But
three are worth their weight in gold. Bounds Checker is a must for testing DOS
programs, and Microsoft Test is a must for testing Windows programs.
MemCheck is invaluable under both systems.

Aside from these two tools, there are a few other useful tools (listed below) as
well as the ever critical debuggers. There is a real need for additional tools to
help discover bugs. I hope that over the next several years, additional tools
will become available to help make discovering bugs easier.

Bounds Checker

Every once in a while, someone comes out with a new class of program:
VisiCalc with the first spreadsheet, Norton with the first Unerase, and now Nu-
Mega with the first bounds checker. Any developer who does not use Bounds
Checker to test programs is guilty of gross dereliction as well as spending a lot
of unnecessary time tracking down a certain class of bugs.

Bounds Checker is actually very simple. It uses the memory mapping and
page faults of the 386 to set bounds on a program. It marks your code area as
read-only and your data area as read-write, marking all other memory off-
limits. If your program writes to anywhere except your data area or reads from
any area other than your code or data area, a page fault occurs, and Bounds
Checker shows you which instruction accessed what out-of-bounds memory.

Bounds Checker turns itself off when a program issues an interrupt. The code
for the interrupt is usually not part of the program, and Bounds Checker

156 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

therefore legitimately accesses memory outside of the program's area. It is
even smart enough to track any DOS allocs and frees you do and allows you to
access only memory that you presently have malloced.

You can list areas that it is okay for your program to access, such as the BIOS
data area, video memory, and EMS. If you simply specify EMS rather than a
specific memory range, Bounds Checker will even automatically determine the
location of the EMS page frame. These exception areas can be of any size (for
the BIOS data area, I list just the bytes I read); can be listed as read-only, read-
write, or write-only; and you can allow any part of your program to access
these ranges or just specific modules.

When it finds a fault, Bounds Checker tells you what part of your code made
the violation and what memory you were accessing, and it lists the call stack,
among other things. The call stack is valuable because if memcpy is causing
the violation, the call stack shows you what routine called memcpy with the
bad pointer. These violations are then written to a log file when the program
exits, allowing testers to use Bounds Checker without having to understand it.

Bounds-Checker does have some limits. It is designed mainly for foreground
applications written in a high-level language such as C. It allows one code area
followed by one data area (each area can be > 64K). This is the most serious
limit. TSRs need this more than foreground applications. Ideally, Nu-Mega
will come up with a method for working with TSRs and allowing interspersed
code and data areas.

BoundsChecker also needs to be more discriminating about segments. The
data area should mark the constant data as read-only. The EMS memory
should only be accessible if pages belonging to the applicationare mapped in.

The above, however, would simply be frosting on the cake: they would make
an already invaluable product even more essential. Nu-Mega is already
working on a number of improvements. As it stands, Bounds Checker is
almost certain to find all of your loose pointers—and definitely the far ones.

A program I wrote several years ago occasionally locked up when executing a
certain function. It happened very rarely and never to me—I wasn't even sure
it was a bug because it was so rare and I never saw it. Bounds Checker found
the memory violation the first time I ran that function. I was writing to the

 157 No Bugs

DOS area, in a place that usually wasn't catastrophic. In less than five minutes,
I eliminated the bug.

Bounds Checker makes it fast and easy to find bugs of this type and is one of
the most cost-effective development tools around in terms of time saved. More
importantly, it almost completely eliminates a class of bugs (loose pointers, and
so on) from programs tested under it.

I believe that within a year it will be considered as unacceptable to sell a DOS
program that has not been tested with Bounds Checker as it is to sell a program
that has not gone through a decent test cycle.

MemCheck

In an earlier chapter, I discussed an assertion function for strings. Among
other things, the assertion macro could, if the passed in pointer was
dynamically malloced, verify that enough memory was available.

Dynamic memory overwrites are one of the most common and difficult-to-find
bugs that occur in C. It becomes especially so with strings where the length of
the string (via strlen) is 1 byte less than needed for storage.

158 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

MemCheck finds these bugs through a number of simple mechanisms. It does
this with almost no effect on your existing code. You include memcheck.h in
your source files and add two calls. That's it.

Although MemCheck can turn its checking on and off for debug and non-
debug mode, you can also put the include and two function calls inside #if
DEBUG statements, and then it disappears in non-debug mode.

MemCheck provides two basic functions.

First, it implements the functionality described in Chapter 8, "Watching Heap
Allocation." All allocations have check bytes placed before and after them. All
allocations know the file and line of source they were malloced in. With this
capability, MemCheck will tell you whether you underwrite or overwrite the
memory you have malloced. It also can list for you, on exit, any unfreed
memory—to prevent you from not freeing all your memory.

Second, MemCheck includes its own library of all the basic string and memory
calls. You then call MemCheck's strlen and memcpy instead of the one in your
compiler's run-time library.

Anytime one of these functions receives a pointer, it will determine whether
the pointer is in the heap. If so, MemCheck then checks to see whether the
pointer points to enough memory for the function. If you dynamically allocate
a pointer to 26 bytes and then try to strcpy 27 bytes to it, MemCheck will find
the error.

Unfortunately, MemCheck works only on dynamically malloced pointers.
There is a call, mc_register, that you can use to list the base and extent of your
global and local variables (you can also unregister, which is crucial for local
variables). However, this requires a function call for each variable. It's too bad
that MemCheck can't read the codeview information in a .EXE file—it lists all
variables including their base and extent.

MemCheck includes the capability to check for writing to NULL. It also can
check the entire heap at any time. Both of these are good additions to the
TestAll function.

It also allows you to provide a function to replace printf, which MemCheck
uses to display errors. If you use a windowing system for your program, you

 159 No Bugs

can have error messages either pop up in a message box or be written to the
debug monitor.

MemCheck gives you a lot of checking for very little time or pain. If you don't
already have code to perform this parameter validation, use MemCheck. I only
wish it did more. Checking just malloced pointers is better than checking no
pointers, though.

This is the epitime of a good No Bugs tool: You can basically forget it's there
until it finds a bug.

Microsoft Test

In the chapter on testing, I stressed that it is critical to automate your tests.
However, this can be a lot of work, especially for a Windows application ("are
you sure that pixel shouldn't be one to the right?").

160 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Until now, most companies either didn't automate—they primarily used batch
files or wrote their own test programs. Microsoft Test does all of this for you.

Microsoft Test is unique and invaluable. With it you can create full-featured
automated tests, essential to a good testing process. By setting up test scripts,
you can, with no human intervention, run scripts that perform every test you
have created against each new version of a program.

Testing a program no longer requires a major investment in time. Testing no
longer requires fallible human beings to watch each step of the program to
verify the program is working properly. Tests are no longer skipped because
of inadequate staff or time. Microsoft Test allows you to create your own
automated test system.

It includes everything you need to create and run automated test scripts,
including keyboard and mouse input and checking the screen output. It runs
tests automatically and logs the results.

Keyboard and mouse input are handled by placing the key and mouse events
in the message queue of the application being tested. The application truly sees
no difference between Microsoft Test and a user typing in some keys.

For screen dump comparisons, you can have separate screen dumps for each
monitor type (EGA, VGA, and so on). You can also use fuzzy logic where it
will look for a button in a given area. Because a button might have a slightly
different shape on different monitor types, the fuzzy logic can allow you to use
one screen dump.

As well as looking at the screen output, Microsoft Test can check dialog boxes
by the contents of controls, DDE and OLE messages, and so on. This allows
you to test against actual results instead of the screen display (ie, the text
contents of an edit control rather than the image of the text on the screen).

It is a lot more valuable to test what values are in a dialog box because
normally you will be using those values. Your program doesn't read the
bitmap of the dialog box, it reads the text in an edit control.

The same holds for DDE and OLE: The contents of these messages is critical to
using them properly. By checking the actual values, you can insure proper
communication with other programs. Without this feature, you would be left
waiting to see the effects of bad data passed.

 161 No Bugs

Microsoft Test includes a Basic command language so that you can develop
sophisticated test scripts. The Basic environment includes a recorder and
debugger so you can debug your debugging scripts.

I had planned on never learning COBOL or Basic. Unfortunately, with the
advent of Microsoft Test (and Microsoft Visual Basic), it is now critical to learn
Basic to be able to program Test. For those of you who already know Basic, all
you have to learn is a few additional commands. The rest of you, like me, have
to learn the whole language.

I wish there were a test program for DOS applications. You can, though, test
your DOS application in a window and use Microsoft Test on it. For most
cases, however, I think you would still be better off writing your own test
software than using Microsoft Test for a DOS application.

Test could make life a lot easier for you when you write a Windows
application, even if you have some automated tools. Test definitely would
make it easier to adequately test your products. With the advent of Test, there
is no excuse for not having a full set of automated tests for every product you
have under development. With the advent of Test, you no longer have any
excuse to ship a Windows application that has not been fully tested.

And how did Microsoft test Test? They had Test test Test testing a program.
And what was one of the programs they tested Test testing? Why, Test of
course. So you had Test testing Test testing Test. Now that's testing recursion.

162 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Multiscope post-mortem debugger

Although the Post-Mortem Debugger is simply a part of the Multiscope
Debugger (discussed later), it deserves separate mention. The Post-Mortem
Debugger recordthe state of your system when your application crashes. You
can then go into this recorded file with the Crash Analyzer to determine what
went wrong. When you are trying to figure out why the program crashed,
especially if it happened only at a beta site, this dump file can prove invaluable.

What makes this feature worth separate mention is that you can ship the
recorder (MED) with your program to beta sites. Then, when a beta site does
something that causes the application to crash, MED records the information
for transmission back to you. At a minimum, you should license a few copies of
the Post-Mortem Debugger so you can send it out to sites that report errors you
cannot duplicate. You might want to simply make it part of your beta kit. This

 163 No Bugs

can eliminate hours of phone calls to beta sites trying to figure out what they
are doing to cause a crash.

Windows Dr. Watson

The program drwatson.exe included with each copy of Windows also deserves
seperate mention. Those of you who were in the Windows 3.1 beta test have
almost certainly seen Dr. Watson in action. When Windows get a GP fault or
protection violation, Dr. Watson prompts the user for a short statement as to
what went wrong.

Dr. Watson then writes a log file with all pertinant informaton about the
system, including the instruction in the application that caused the error. In
many cases, this log would point you directly to the bug.

If a user reports a bug in a program of yours that causes Windows 3.1 to close
the program, have them repeat the error with drwatson.exe running. Then

164 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

have them ship you the error log. Nine times out of ten that will be sufficient
to solve the problem.

Windows debug version

The Windows Software Development Kit includes a debug version of
Windows. In Windows 3.0 this made a big difference because the debug
version performed parameter checking, while the retail version didn't.

The debug version still performs additional checking that the retail version
does not perform. A Windows application should run, without even a
warning, on the debug version of Windows. While testing a Windows
application, use the debug version of Windows and have a serial terminal
connected to your serial port (which the debug kernel will write to).

The debug version also has several flags that you can turn on to perform
additional checking. The first flag is ilovebear (there is an interesting story
behind the name), which will cause passed-in strings to be filled to their passed
in limits before having return values placed in them. This guarantees that all
passed-in buffers are long enough.

The debug version also has the call ValidateFreeSpaces, which, in conjunction
with the flags EnableFreeChecking and EnableHeapChecking perform
additional checking of the heap. This call adds about a 20 percent overhead to
Windows. However, it will catch writes to freed memory.

The call ValidateCodeSegments is useful only in real mode. If your program
will run in real mode, then you should use this test at times. However, if your
program will only run in protected mode, then there is no reason to use this
call.

Windows also provides the Stress Applicator and Heap Walker, which can be
used to eat up resources. The Stress Applicator can use up the heap, leaving a
set amount of free memory. It can do this to the global heap, a programs local
heap, and the GDI heap (more commonly known as system resources). It can
also use up disk space and file handles, once again leaving limited or no
resources.

The Heap Walker can also use up the global heap as well as discard discardable
segments. Both Stress Applicator and Heap Walker allow you to test your
application under situation where resources have completely run out.

 165 No Bugs

Generally, your program will not be expected to be able to continue in these
cases, but it should at least gracefully decline to perform a function.

Again, these valuable tools allow you to see what your program will do under
severe constraints. Between these tools and the debug kernel, you can do a
decent job testing your Windows application. Not using these tools to test your
Windows application is inviting trouble.

RT-link

RT-Link deserves mention here. RT-Link is a sophisticated linker for DOS
programs and, on the face of it, does not belong in this section. However, RT-
Link implements some tools that show how powerful some error checking can
be when implemented properly.

RT-Link allows you to link your programs to use virtual memory on an 8088.
Code (and data too, in some cases) is kept on disk and paged into memory as
needed. Unlike an overlay linker, RT-Link keeps a list of pages and loads the
code into the LRU page.

Needless to say, the program is loaded quite differently each time you run it.
Because code that has called other code can be unloaded (and then reloaded on
return), you have a very dangerous situation if any one page of code depends
on another page actually being in memory.

This is not a bug in RT-Link. You can tell RT-Link when you believe it's safe
for one code page to access another directly, saving the performance hit of
going through RT-Link's virtual memory manager.

However, if you are wrong somewhere, you might be accessing a page that is
usually still in memory. This leads to a bug that occurs only on systems with a
small amount of memory or on any system when you call a set of functions in a
certain order.

RT-Link includes a command (VM_MURPHY) that allocates just one page for
all virtual memory swapping. When linked with this command, the program
is painfully slow. However, at no time is more than one page in memory. If
one page depends on another page being in memory, it will crash.

This is a commendable example of a tool vendor incorporating technology that
helps find bugs. Moreover, this command is a technique that can be

166 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

incorporated only by the tool vendor. If only more tool vendors would provide
features like this...

Debuggers

Be sure you have a good debugger. Personally, I'm partial to Soft-Ice on a 386
and Periscope on a 286 or 8086. However, I prefer debugging in assembly
language. Although both Soft-Ice and Periscope have C source-level
debugging, it is generally one step behind that of the compiler vendor's source
level displays.

When you really need to get down and dirty with Windows in 386 mode, then
you have only two choices of debuggers; wdeb386 or Win-Ice (Soft-Ice for
Windows). wdeb386 comes with the Windows SDK and is an awesome
command-line debugger. Win-Ice, however, is a full-screen debugger and
works at a source-code level.

Periscope has a debugger for Windows. However, for debugging on a system
level, for example, on VxDs, it is much more limited than Win-Ice or WDEB386.
For application-level debugging, it is not as good as Multiscope. Also, it
requires two 80386 systems connected via a serial line.

The valuable thing about debugging in assembly language is you see what you
are actually getting for final code. This not only allows you to see whether the
compiler is generating bad code (which occasionally happens) but also to see
how efficient the code is. This will become more important with the advent of
C++, where a + can become a horribly slow and complex set of instructions.

The source-level debuggers shipped with compilers, such as those from
Microsoft and Borland, are all good and getting better. Multiscope's source-
level debugging is flat-out incredible. Simply be sure the debugger does what
you want and you know how to use it.

Finally, if you really need to get down to the hardware, and you find that Soft-
Ice is interfering with some subtle timing problems, then you need a hardware
ICE. In this case there is only one choice: Periscope IV. Some of the Periscope
debuggers are hardware based, so they do not affect the system at all (Soft-Ice
does affect it some). And they cost a lot less than the ICEs from Intel.

If you get down to the system level, you need Soft-Ice (or Win-Ice) on a 386 and
Periscope on a 286 or earlier machine. If you program at the application level,

 167 No Bugs

you can use one of those debuggers, the debugger that comes with your
compiler, or Multiscope.

If you find yourself at both the system and the application levels, you need two
or three debuggers. Just as a carpenter usually owns several saws, many
developers need several debuggers.

Periscope

Quite simply, the best assembler-level debugger for an 80286 or earlier system
is Periscope. Not only is it a very good debugger, but it is also the only
program I have ever used in which I have not found a single bug (and he did it
without reading this book!).

Periscope has just about every feature you could ever need, including source-
level symbolic debugging. One version, the Model II, includes a switch you
can use to break into the debugger at any time—even if interrupts are off.

Another version, the Model I, uses an inexpensive board with write-protected
memory. The debugger is loaded into the board's memory, leaving all lower
memory free. Although a program can usually spare the lower memory, some
bugs disappear when the program is loaded higher.

If a bug tries to write over the write-protected memory, the memory won't get
hurt. You can still bring the debugger up, regardless of the damage your bug
has caused. This sounds like a great feature, but I have found that by the time
a bug has trashed everything else, there is no information left to help you
discover what caused the problem in the first place.

Periscope also has Model IV, with cards that go in the PC that give you most of
the features of an ICE for a lot less money. If you find yourself needing an ICE
for a 286 or 386, again, Periscope is the place to go.

 Although the Periscope ICE does not have every feature of the Intel ICE, it
provides most of the same functionality at a much lower price. Although Soft-
Ice changes the system slightly, the Periscope-assisted cards have no effect at
all. That makes a sometimes critical difference.

Because the Periscope IV card sits on the buss, it can watch the actual buss
signals without any change in system performance. This can be tremendously
valuable in some cases because you receive more information—more than just

168 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

which instruction executed. If a Soft-Ice isn't powerful enough to find a bug,
this is.

Periscope for Windows gives you full debugging of everything except VxDs. It
can debug VxDs after the Sys_Critical_Init is over. It provides full-screen,
source-level, symbolic debugging. The debugger requires two 80306 systems,
one running the debugger and the other running Windows (and a small part of
the debugger).

Because it uses two systems, the debugger can read source files, map files, etc.
without affecting the Windows system. Also, the Windows system is
minimally affected by the small Periscope stub program running on it.

Soft-Ice

Brought to you by the people who did Bounds Checker, Soft-Ice uses the
capabilities of the 386 to give you an 8086 ICE using software only. It comes
admirably close to this goal, falling short only on some very subtle timing
problems.

If you are debugging real-mode DOS programs, this debugger will be
invaluable sooner or later. You can set it to break when a program reads or

 169 No Bugs

writes to a memory location and then have it run at full speed until the
read/write does occur (try that with a normal debugger).

Soft-Ice performs this magic using a couple of features in the 80386. First of all,
the 80386 has a couple of debug registers that can be used to cause a break
when accessing a specific memory location. There are few of these, and they
can be set only to break on a byte to dword range.

Soft-Ice also uses the paging capabilities of the 80386. To break on a memory
range, Soft-Ice marks the memory page as not there. Then, when the page is
accessed, Soft-Ice determines whether the desired range on the page was
touched. If so, it stops the operation. If not, it allows the operation and then
continues.

This works unless the break range is on a page where other contents of the
page are accessed constantly. Because pages are in 4K chunks, this can be a
real problem. The most common performance problem is setting a break on
access to a local variable. Because a local variable is on the stack, every stack
access will cause a page fault.

So Soft-Ice is not always a perfect debugging solution. However, in most cases,
it gives you all of the ICE capabilities you need—for a lot less money than any
real ICE.

Soft-Ices also has a version for Windows, called Win-Ice. Win-Ice debugs not
only Windows applications, but also Windows device drivers, virtual device
drivers, and DOS applications running in a Windows DOS box. Quite simply,
it's incredible in its range of features and capabilities.

170 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Multiscope

Multiscope is a debugger for DOS, Windows, and OS/2 (whatever that is). In
Windows, it runs as a Windows application, which gives you an awesome
interface. Although not as good on really low-level debugging, for source-level
debugging of an application it shines.

Multiscope is hard to describe in a couple of paragraphs. It is simply the best
applications debugger on the market. It provides a multitude of interfaces, but
the best way to use it is with its Windows interface.

Under Windows you can debug both DOS (in a DOS box) and Windows
programs. You can debug programs running on the same machine or on a
different system over a serial line. You can also use dual monitors, but then
your second monitor is using a character-based interface instead of Windows.

Part of Multiscope's appeal is that it is Windows based. Providing the same
windowed data via Windows instead of using a character-based display makes
it a better interface than any other debugger. Also, Windows allows better
sizing and layout than you will get on an 80 x 25 monichrome display adapter
(MDA).

Also, the Windows interface is generally a lot easier to use than a character-
based one. All of the reasons users prefer Windows-based applications hold

 171 No Bugs

for a debugger. In addition, Windows makes it very easy to do things such as
modify memory—you click and type.

Multiscope is light-years ahead of all other debuggers for one of its features: its
graphic data display. It gives you the normal capibilities to view your data
plus, when you click on a structure or pointer, it displays the contents of the
structure. Even better than that, it has a Graphic Data window.

The Graphic Data feature will draw pictures of your data. Each structure is
drawn as a row of boxes. The structure values will be in each box. Each
pointer in the structure will be identified by name and will have an arrow
pointing to its pointee. Sometimes a picture is worth a 1000 words, and
Multiscope proves that.

Unfortunately, Multiscope is designed as an application debugger. For
debugging systems-level programs, you need Soft-Ice or Periscope. But if you
are writing applications, this is the debugger to use.

172 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

New tools

New debugging tools are being released every month. The tools described
above are state of the art in the Spring of 1992. When you read this book,
newer, and possibly better, tools will almost certainly be available.

However, for now, you should look at the tools discussed here. This chapter
was written so you know the least you should expect in terms of tools to help
you find the MFUs you placed in your code.

The End

So we come to the end of the book. If you've stuck through to here from the
begining, thank you for taking the time to listen to what I had to say. If you
have any suggestions or comments, please do send them to me. Preventing
and finding MFUs is still a very young practice in the PC world.

 173 No Bugs

Keep in mind that the practices discussed in this book are methods I have seen
work. However, this does not mean they are perfect for every solution. Nor
does it mean that they are the only possibilities. The bottom line is what
practices are effective. If some of the ones in here don't work for you, then
don't use them. If other practices work well for you, then by all means you
should use them.

And most important of all, remember how those MFUs got in your code. You
put them there so that you could spend 3 day sesions without sleep trying to
find them.

174 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

Appendix A

DEBUG MESSAGE BOXES

debgmsg.c

#if DEBUG > 0

// These are left public so you can change them with your
// debugger while your program is running. They are kept
// in one structure so there is only 1 global variable that
// you have to worry about naming conflicts with.
DEBUG_VARS sDebug={0,0,-1,true,true,true,true,false};

#if WIN != 0
static BYTE sTmp[MAX_DEBUG_STR+2]="\0";
#else

// This is used to store resource strings in memory for DOS
// (in Windows you use actual resources). This is covered in
// detail below.
typedef struct S_RES_STRINGS
 {
 unsigned iResNum;
 BYTE _far *pResStr;
 } RES_STRINGS;

extern RES_STRINGS _far ResStr[]; // Done so you can put the
strings
 // at the end of the file.
#endif

// Same parameters as a printf. Will put up the message and
// wait for a key to be pressed.
void DebugMessageBox (BYTE const *psFrmt, ...)
{
va_list pVa;

 175 No Bugs

 // for case 0 - you can go ahead and print in Window 3.
 // Otherwise if pause is off, you don't do anything. An
 // alternative is to always use vDebugPrint if pause is off
 if ((sDebug.iBox != 0) && (! sDebug.fPause))
 return;

 va_start (pVa, psFrmt);

 // you now need to put up the message. you have the following
 // alternatives:
 // 0 - It goes to Window 3 and then pauses
 // 1 - It pop up on the screen
 // 2 - DOS only - tty output to the screen
 switch (sDebug.iBox)
 {
 case 0 :
 vDebugPrint (3, psFrmt, pVa);
 DebugPause ();
 break;

#if WIN > 0
 case 1 :
 Vsprintf (MAX_DEBUG_STR, sDebug.sMsg, psFrmt, pVa);
 if (MessageBox (0, sDebug.sMsg, "ERROR", MB_TASKMODAL |
 MB_ICONEXCLAMATION | MB_OKCANCEL) == IDCANCEL)
 sDebug.fPause = false;
 break;
#else

 case 1 :
 PopMessageBox (psFrmt, pVa);
 break;
 case 2 :
 TtyMessageBox (psFrmt, pVa);
 break;
#endif
 }
}

// The same as DebugMessageBox except it has a resource number
// instead of a dormat string. When debugging, the format
// strings can end up taking enough of the default data segment
// that you run out of space. In Windows, you can store these
// strings as resources. Although you can't do that in DOS, you
can

176 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

// at least move them to a far data segment so they don't use up
// near data.
void DebugMessageRes (unsigned iNum, ...)
{
va_list pVa;
#if WIN == 0
RES_STRINGS _far *pResOn;
#endif

 // Get the vars
 va_start (pVa, iNum);

// if not windows, you have to get the string from below. The
// strings are all in a far data segment so you have to copy it
// over.
#if WIN == 0

 for (pResOn=ResStr; pResOn->iResNum; pResOn++)
 if (pResOn->iResNum == iNum)
 break;

 if (pResOn->iResNum)
 fStrnCpy (sDebug.sMsg, pResOn->pResStr, MAX_DEBUG_STR);
 else
 {
 StrCpy (sDebug.sMsg, "Unknown resource: %d");
 pVa = (va_list) &iNum;
 }
#endif

 switch (sDebug.iBox)
 {
 case 0 :
 StrCat (sDebug.sMsg, "\n");
 vDebugPrint (3, sDebug.sMsg, pVa);
 DebugPause ();
 break;

#if WIN > 0
 case 1 :
 if (LoadString (sDebug.hInst, iNum, sTmp,
 MAX_DEBUG_STR) <= 0)
 Sprintf (MAX_DEBUG_STR, sDebug.sMsg,

 177 No Bugs

 "DebugPrintRes - No string: %d", iNum);
 else
 Vsprintf (MAX_DEBUG_STR, sDebug.sMsg, sTmp, pVa);

 if (MessageBox (0, sDebug.sMsg, "ERROR", MB_TASKMODAL |
 MB_ICONEXCLAMATION | MB_OKCANCEL) == IDCANCEL)
 sDebug.fPause = false;
 break;
#else

 case 1 :
 PopMessageBox (sDebug.sMsg, pVa);
 break;
 case 2 :
 TtyMessageBox (sDebug.sMsg, pVa);
 break;
#endif
 }
}

// If you don't have Windows, you have to store our resource
// strings in memory. This is all done right here so if you
// have string resources in DOS, you can pull this out. If not,
// at least it is far data so you don't have to worry about it
// filling up the default data area.
#if WIN == 0

RES_STRINGS _far ResStr[]={

// buffer\mem
ERR_MEMCPY1, STR_MEMCPY1,
ERR_MEMCPY2, STR_MEMCPY2,

... ...

 0, NULL};
#endif

#endif

_errnum.h

#ifndef I__ERRNUM
#define I__ERRNUM

178 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

#define ERR_MEMCPY1 16
#define ERR_MEMCPY2 17

...

#endif

_errstr.h

#ifndef I__ERRSTR
#define I__ERRSTR

#ifndef I__ERRNUM
#include "_errnum.h"
#endif

// buffer\mem
#define STR_MEMCPY1 "fHbMemCpy (%Fp,%Fp,%u)"
#define STR_MEMCPY2 "HbMemCpy (%p,%p,%u)"

...

#endif

pop_box.c

#if DEBUG > 0
#if WIN == 0

#include "_doslib.h"

void *allocate(unsigned uLen);
void free (void *pBuf);

static void TextCpy (BYTE _far *fpScrn,BYTE const *pBuf,unsigned
iNum);
static int iLevel=0;
static BYTE sPrmt[] = "Press <CR> to continue or ESC to exit";

// The same parameters as printf. Will force the monitor into
80x25

 179 No Bugs

// mode and pop up a message box displaying the passed in text.
Press
// <CR> to continue or ESC to exit to DOS.
// Will save the underlaying screen if allocate can find enough
memory.
PopMessageBox (BYTE const *pFrmt, void const *pVa)
{
BYTE _far *fpScrn, _far *fpTmp;
BYTE *pBuf, *pRtn, *pUnd;
int iRows, iCols, iNr, iNc, iNum;
BYTE bMode, bPage, bChar;

 // you aren't re-entrant
 if (iLevel)
 return (-1);
 iLevel++;

 // Get the mode and page you are in
 _asm
 {
 mov ah, 0Fh
 int 10h
 mov bMode, al
 mov bPage, bh
 }

 // If you are in mode 3 or 7 - we're done - go for it
 // Otherwise, you need to switch to mode 3
 if ((bMode != 3) && (bMode != 7))
 _asm
 {
 mov ax, 0003h
 int 10h
 mov ah, 0Fh
 int 10h
 mov bPage, bh
 }

 // If you are not on page 0 - switch it
 if (bPage)
 _asm
 {
 mov ax, 0500h
 int 10h
 }

180 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // OKAY, you now create the message to determine how big a box
you need
 // to pop up.
 Vsprintf (MAX_DEBUG_STR, sDebug.sMsg, pFrmt, pVa);

 // you need to determine the maximum width and height
 iRows = 2;
 iCols = StrLen (sPrmt) + 2;
 pBuf = sDebug.sMsg;
 while (*pBuf)
 {
 if ((pRtn = StrChr (pBuf, '\n')) == NULL)
 pRtn = pBuf + StrLen (pBuf);
 iCols = Max (iCols, pRtn - pBuf + 4);
 iRows++;
 if (*(pBuf = pRtn) == '\n')
 pBuf++;
 }

 // Figure out the pop-up position
 iNr = *((BYTE _far *) PTR (0x40, 0x84)) + 1;
 iNc = *((unsigned _far *) PTR (0x40, 0x4A));
 fpScrn = (bMode == 7) ? PTR (0xB000,0) : PTR (0xB800,0);
 fpScrn += (((iNr - iRows) & ~1) * iNc) + ((iNc - iCols) & ~1);

 // you need some memory to store the underlay
 // If you don't get it - you pop up anyways - you simply can't
restore
 // the screen.
 if ((pUnd = allocate (iRows * iCols * 2)) != NULL)
 for (iNum=iNr, pRtn=pUnd, fpTmp=fpScrn; iNum--;
 pRtn+=iCols*2,
fpTmp+=iNc*2)
 fMemCpy (pRtn, fpTmp, iCols*2);

 // Put up the border, clear the center & set the attributes
 fMemwSet (fpScrn, 0x70CD, iCols);
 *fpScrn = 0xC9;
 *(fpScrn+(iCols-1)*2) = 0xBB;
 for (iNum=iRows-2, fpTmp=fpScrn+iNc*2; iNum--; fpTmp+=iNc*2)
 {
 fMemwSet (fpTmp+2, 0x0720, iCols-2);
 *((unsigned _far *)fpTmp) = 0x70BA;
 *(((unsigned _far *)fpTmp)+iCols-1) = 0x70BA;

 181 No Bugs

 }
 fMemwSet (fpTmp, 0x70CD, iCols);
 *fpTmp = 0xC8;
 *(fpTmp+(iCols-1)*2) = 0xBC;
 iNum = StrLen (sPrmt);
 TextCpy (fpTmp+((iCols-iNum)&~1), sPrmt, iNum);

 // Print out the message
 fpTmp = fpScrn + iNc * 2 + 4;
 pBuf = sDebug.sMsg;
 while (*pBuf)
 {
 if ((pRtn = StrChr (pBuf, '\n')) == NULL)
 pRtn = pBuf + StrLen (pBuf);
 iNum = pRtn - pBuf;
 TextCpy (fpTmp, pBuf, iNum);
 fpTmp += iNc * 2;
 pBuf += iNum;
 if (*pBuf)
 pBuf++;
 }

 // you now need to wait for a <CR> or ESC to be pressed
 while (true)
 {
 _asm
 {
 mov ah, 0
 int 16h
 mov bChar, al
 }

 switch (bChar)
 {
 case 0x0D:
 goto Done;
 case 0x1B:
 _asm
 {
 mov ax, 4CFFh
 int 21h
 }
 goto Done;

 // beep - bad char

182 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 default:
 _asm
 {
 mov ax, 0E07h
 mov bx, 0007h
 int 10h
 }
 }
 }

Done:
 // If you have an underlay, you restore it
 if (pUnd)
 {
 for (iNum=iNr, pRtn=pUnd, fpTmp=fpScrn; iNum--;
 pRtn+=iCols*2,
fpTmp+=iNc*2)
 fMemCpy (fpTmp, pRtn, iCols*2);
 free (pUnd);
 }

 // Restore the mode and page. you only restore it if it's
different
 // Some BIOSes do weird things if you set to the existing
mode/page
 _asm
 {
 mov ah, 0Fh
 int 10h
 cmp bMode, al
 je ModeOk
 mov ah, 00h
 mov al, bMode
 int 10h
ModeOk:
 mov ah, 0Fh
 int 10h
 cmp bPage, bh
 je PageOk
 mov ah, 05h
 mov al, bPage
 int 10h
PageOk:
 }

 183 No Bugs

 iLevel--;
 return (0);
}

static void TextCpy (BYTE _far *fpScrn,BYTE const *pBuf,unsigned
iNum)
{

 while (iNum--)
 {
 *fpScrn = *pBuf++;
 fpScrn += 2;
 }
}

#endif
#endif

tty_box.c

#if DEBUG > 0
#if WIN == 0

#include "_doslib.h"

static iLevel=0;
static void TtyOut (BYTE const *pBuf);

// The same parameters as printf. Will use the video BIOS to
print
// the text out via tty (ie, like a normal printf). Press <CR>
to
// continue or ESC to exit to DOS.
TtyMessageBox (BYTE const *pFrmt, void const *pVa)
{
BYTE bChar;

 // you aren't re-entrant
 if (iLevel)
 return (-1);
 iLevel++;

 // you first need to be sure the cursor is on the screen.
 // If it isn't, you put it at 0,0

184 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // Note: this should work with virtually all cards in most
modes.
 // However, to be system independent, it doesn't work
with
 // cards that don't support the BIOS, like the hercules
card
 // in graphics mode.
 _asm
 {
 mov ah, 0Fh
 int 10h // Get active page
 mov ah, 03h
 int 10h // Get cursor position
 push es
 mov ax, 40h
 mov es, ax
 cmp dl, es:[4Ah] // ?? past end of line
 jb ColOk // NO - col ok
 inc dh
 xor dl, dl // set to start of next
line
ColOk:
 cmp dh, es:[84h] // ?? past last row
 jbe RowOk // NO - row ok
 xor dx, dx // set to 0, 0
RowOk:
 pop es
 mov ah, 02h // set cursor position
 int 10h // do this regardless in
case the
 } // BIOS didn't know
(like Lotus 123)

 // OKAY, you have the cursor in the right place. you now do a
sprintf to
 // a buffer and print using int 10h. you do this instead of a
printf
 // because you want to disturb the system as little as
possible AND
 // things might be really fucked-up, to the point that DOS can
write to
 // the screen.

 // This method has two dangers, first you are not re-entrant
and second,

 185 No Bugs

 // you have a limit to how long a message can be.

 Vsprintf (MAX_DEBUG_STR, sDebug.sMsg, pFrmt, pVa);

 // Print it out via TTY
 TtyOut (sDebug.sMsg);
 TtyOut ("\nPress <CR> to continue or ESC to exit");

 // you now need to wait for a <CR> or ESC to be pressed
 while (true)
 {
 _asm
 {
 mov ah, 0
 int 16h
 mov bChar, al
 }

 switch (bChar)
 {
 case 0x0D:
 TtyOut ("\n");
 iLevel--;
 return (0);
 case 0x1B:
 iLevel--;
 _asm
 {
 mov ax, 4CFFh
 int 21h
 }
 return (-1); // In case the exit
fails
 } // This will only happen
if you
 // are doing something
really weird
 // beep - bad char
 TtyOut ("\007");
 }
}

// Print it out via TTY
static void TtyOut (BYTE const *pBuf)
{

186 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

BYTE bPage, bChar;

 _asm
 {
 mov ah, 0Fh
 int 10h // Get active page
 mov bPage, bh
 }

 while (*pBuf)
 {
 if ((bChar = *pBuf++) == '\n')
 _asm
 {
 mov ax, 0E0Dh
 mov bh, bPage
 mov bl, 07h
 int 10h
 }
 _asm
 {
 mov ah, 0Eh
 mov al, bChar
 mov bh, bPage
 mov bl, 07h
 int 10h
 }
 }
}

#endif
#endif

 187 No Bugs

Appendix B

DEBUG SECOND MONITOR

debgprnt.c

#if DEBUG > 0

// Defined here and in mda.c
#define PRINT_SCREEN 0x01
#define FILE_OFF 0x02
#define PAUSE_OFF 0x04
#define ERROR_OFF 0x08
#define PAUSED 0x10

int MdaNumRows (void);
int MdaNumCols (void);
FLAG MdaInit(void);
void MdaBeep(void);
void MdaFill(int iRow,int iCol,unsigned short uChrAtr,int
iNum);
void MdaWrite(int iRow,int iCol,BYTE const _far *pBuf,int
iNum);
void MdaScroll(int iRow,int iCol,int iNr,int iNc);
unsigned short MdaGetChar(int iRow,int iCol);
BYTE MdaKey(void);
FLAG MdaPrnt(BYTE bChr,FLAG fTran);

static void DebugOut (BYTE const _far *psBuf,int iLen,int _far
*piWin);
static void DoMsg (int iRow,int iCol,int iNr,int iNc,int
*piCurRow,
 int *piCurCol,BYTE const _far *psBuf,int iLen);
static void fScroll (void);
static void _PrintScreen (void);
static BYTE _PrintChar (BYTE bChr);

188 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

static int iLevel=0, iLastFileWin=-1;

#define NUM_WINDOWS 5
#define MSG_ROW 20
#define MSG_COL 65

static int iRect[NUM_WINDOWS][6] = { 0, 0, 11, 49, 0, 0,
 12, 0, 20, 49, 12, 0,
 21, 0, 25, 25, 21, 0,
 21, 26, 25, 80, 21, 26,
 0, 50, 20, 80, 0, 50};

// Clear screen, set up borders
void DebugVideoInit ()
{
int iNum, iRow, iStrt, iLast;

 // See whether you have a MDA
 if (MdaInit ())
 {
 if (sDebug.iBox == 0)
 sDebug.iBox = 1;
 sDebug.fDebug = sDebug.fMda = false;
 return;
 }
 sDebug.fMda = true;

 // Clear it
 MdaFill (0, 0, 0x0720, MdaNumRows () * MdaNumCols ());

 // Set up dividers
 for (iNum=0; iNum<NUM_WINDOWS; iNum++)
 if (iRect[iNum][0] > 0)
 MdaFill (iRect[iNum][0]-1, iRect[iNum][1], 0x70CD,
 iRect[iNum][3] -
iRect[iNum][1]);

 // Put up the vertical lines and joints
 for (iNum=0; iNum<NUM_WINDOWS; iNum++)
 if (iRect[iNum][1] > 0)
 {

 189 No Bugs

 iStrt = iRect[iNum][0]>0 ? iRect[iNum][0]-1 :
iRect[iNum][0];
 iLast = iRect[iNum][2]>=MdaNumRows () ? iRect[iNum][2]-1 :
iRect[iNum][2];
 for (iRow=iStrt; iRow<=iLast; iRow++)
 {
 switch ((MdaGetChar (iRow, iRect[iNum][1]-2) << 8) |
 (MdaGetChar (iRow, iRect[iNum][1]) &
0xFF))
 {
 case 0xCD20 :
 MdaFill (iRow, iRect[iNum][1]-1, 0x70B9, 1);
 break;
 case 0x20CD :
 MdaFill (iRow, iRect[iNum][1]-1, 0x70CC, 1);
 break;
 case 0xCDCD :
 if (iRow == iStrt)
 {
 if ((iRow > 0) && ((MdaGetChar (iRow-1,
iRect[iNum][1]-1)
 & 0xFF00)
== 0xBA))
 MdaFill (iRow, iRect[iNum][1]-1, 0x70CE, 1);
 else
 MdaFill (iRow, iRect[iNum][1]-1, 0x70CB, 1);
 }
 else
 if (iRow == iLast)
 MdaFill (iRow, iRect[iNum][1]-1, 0x70CA, 1);
 else
 MdaFill (iRow, iRect[iNum][1]-1, 0x70CE, 1);
 break;
 default :
 MdaFill (iRow, iRect[iNum][1]-1, 0x70BA, 1);
 break;
 }
 }
 }
}

// When called, will wait for pause (Scroll Lock) to be turned
on
// and then off again.
FLAG DebugPause (void)

190 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

{
FLAG fRtn=false;

 if ((! sDebug.fPause) || (! sDebug.fMda))
 return (false);

 MdaWrite (MSG_ROW, MSG_COL, " Paused ", 8);
 MdaBeep ();

 while (! (MdaKey () & PAUSED))
 {
 if (MdaKey () & FILE_OFF)
 {
 sDebug.fWrite = false;
 MdaWrite (MSG_ROW, MSG_COL, " Write OFF ", 11);
 }
 if (MdaKey () & ERROR_OFF)
 {
 sDebug.fError = false;
 MdaWrite (MSG_ROW, MSG_COL, " Error OFF ", 11);
 }
 if (MdaKey () & PRINT_SCREEN)
 _PrintScreen ();
 if (MdaKey () & PAUSE_OFF)
 {
 sDebug.fPause = false;
 MdaWrite (MSG_ROW, MSG_COL, " Pause OFF ", 11);
 break;
 }
 }

 fScroll ();

 return (fRtn);
}

// Does a printf to window iWin on the MDA. After iWin, the
// parameters are the same as printf.
void DebugPrint (int iWin,BYTE const *psFrmt, ...)
{
va_list pVa;

 if (iLevel)
 return;

 191 No Bugs

 va_start (pVa, psFrmt);

 vDebugPrint (iWin, psFrmt, pVa);
}

// A vprintf to the MDA.
// you are definitely NOT re-entrant so you use iLevel to be
sure
// that you aren't called while handling this (such as
vDebugPrintf
// calling a function with a bad parameter).
void vDebugPrint (int iWin,BYTE const *psFrmt,void const *pVa)
{
BYTE sBuf[8];

 // If no MDA - leave
 if (! sDebug.fMda)
 return;

 // If debug printfs are turned off and it's not an error -
leave
 if (! sDebug.fDebug)
 {
 if ((iWin != 3) || (! sDebug.fError))
 return;
 }

 // If you are being re-entered - hit the debugger, then
return.
 if (iLevel)
 {
 _asm { int 3 };
 return;
 }

 // If a bad window number - put up a message.
 if ((iWin < 0) || (iWin > NUM_WINDOWS-1))
 {
 DebugPrint (3, "*Bad DebugPrint Window Number: %d *\n",
iWin);
 MdaBeep ();
 return;
 }
 iLevel++;

192 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // write to the error file
 if ((sDebug.hFile >= 0) && (sDebug.fWrite))
 {
 // End the prev line with a \n if you are changing windows
and the
 // previous line didn't end with a \n
 if ((iLastFileWin != -1) && (iLastFileWin != iWin))
 {
 iLastFileWin = iWin;
 FileWrite (sDebug.hFile, "\n", 1);
 }
 Sprintf (6, sBuf, "%d: ", iWin);
 FileWrite (sDebug.hFile, sBuf, StrLen (sBuf));
 }

 // Print it
 _Printf (DebugOut, psFrmt, 0x7FF0, &iWin, pVa);

 // you do a commit here so if you lock up after returning this
 // message made it to disk. Slow but critical. you do not
 // open with commit set because you only need to commit after
 // the _Printf - which will call FileWrite below approximately
 // twice for each % in psFrmt
 if ((sDebug.hFile >= 0) && (sDebug.fWrite))
 {
 if (iLastFileWin != -1)
 iLastFileWin = iWin;
 FileCommit (sDebug.hFile, false);
 }

 iLevel--;
}

// This function is called by _Printf to print. It then calls
// DoMsg with the correct parameters for iWin.
static void DebugOut (LPCBYTE psBuf,int iLen,int far *piWin)
{

 /* write to the mono monitor */
 DoMsg (iRect[*piWin][0], iRect[*piWin][1], iRect[*piWin][2],
 iRect[*piWin][3], &iRect[*piWin][4],
&iRect[*piWin][5],
 psBuf, iLen);
}

 193 No Bugs

// Prints the text in the proper window. Handles scrolling
within
// a window. Looks for the shift keys.
static void DoMsg (int iRow,int iCol,int iNr,int iNc,int
*piCurRow,
 int *piCurCol,BYTE const far *psBuf,int iLen)
{
int iNum;
BYTE _far *fpCr;

 // write to the error file. In the interests of speed, you do
 // not convert \n to \r\n. Most text editors can handle \n by
 // itself.
 if ((sDebug.hFile >= 0) && (sDebug.fWrite))
 {
 if (*(psBuf+iLen-1) == '\n')
 iLastFileWin = -1;
 else
 iLastFileWin = -2;
 fFileWrite (sDebug.hFile, psBuf, iLen);
 }

 /* write to the mono monitor */
 while (iLen > 0)
 {
 // Check shift keys
 fScroll ();

 // see whether need to scroll. you do it like this so a new
blank
 // line does not appear on the screen, scrolling the top,
 // non-blank line off. you scroll to a new line when you
have
 // something to write to it.
 if (*piCurRow >= iNr)
 {
 MdaScroll (iRow, iCol, iNr-iRow, iNc-iCol);
 *piCurRow = iNr - 1;
 *piCurCol = iCol;
 }

 // do next
 if (*psBuf == '\n')
 {

194 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 (*piCurRow)++;
 *piCurCol = iCol;
 psBuf++;
 iLen--;
 }

 else
 {
 // you can only write a line at a time.
 if ((fpCr = fStrChr (psBuf, '\n')) != NULL)
 iNum = Min (iLen, fpCr - psBuf);
 else
 iNum = iLen;
 iNum = Min (iNum, iNc - *piCurCol);

 // Write it
 MdaWrite (*piCurRow, *piCurCol, psBuf, iNum);
 psBuf += iNum;
 *piCurCol += iNum;
 iLen -= iNum;

 // Did you need to wrap to the next line?
 if ((*piCurCol >= iNc) && (*(psBuf + 1) != '\n'))
 {
 /* wait on scroll lock */
 fScroll ();

 (*piCurRow)++;
 *piCurCol = iCol;
 }
 }
 }

 // Check the shift keys again before leaving.
 fScroll ();
}

// This is where you check and act on the shift keys.
static void fScroll (void)
{

 if (! (MdaKey () & PAUSED))
 return;

 MdaFill (MSG_ROW, MSG_COL, 0x70CD, 11);

 195 No Bugs

 MdaWrite (MSG_ROW, MSG_COL, " Paused ", 8);

 while (MdaKey () & PAUSED)
 {
 if (MdaKey () & PAUSE_OFF)
 sDebug.fPause = false;
 if (MdaKey () & FILE_OFF)
 {
 sDebug.fWrite = false;
 MdaWrite (MSG_ROW, MSG_COL, " Write OFF ", 11);
 }
 if (MdaKey () & ERROR_OFF)
 {
 sDebug.fError = false;
 MdaWrite (MSG_ROW, MSG_COL, " Error OFF ", 11);
 }
 if (MdaKey () & PRINT_SCREEN)
 _PrintScreen ();
 }

 if (! sDebug.fPause)
 MdaWrite (MSG_ROW, MSG_COL, " Pause OFF ", 11);
 else
 MdaFill (MSG_ROW, MSG_COL, 0x70CD, 8);
}

// Prints the MDA display on the printer.
static void _PrintScreen (void)
{
int iRow, iCol;

 // Put a print message on the debug monitor
 MdaWrite (MSG_ROW, MSG_COL, " Printing ", 10);

 // Start fresh
 if (MdaPrnt ('\r', false))
 goto dne;
 if (MdaPrnt ('\n', false))
 goto dne;
 if (MdaPrnt ('\r', false))
 goto dne;
 if (MdaPrnt ('\n', false))
 goto dne;

 for (iRow=0; iRow<MdaNumRows (); iRow++)

196 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 {
 for (iCol=0; iCol<MdaNumCols (); iCol++)
 if (MdaPrnt ((BYTE) MdaGetChar (iRow, iCol), true))
 goto dne;

 if (MdaPrnt ('\r', false))
 goto dne;
 if (MdaPrnt ('\n', false))
 goto dne;
 }

 // Space from what will follow (possibly another screen dump)
 if (MdaPrnt ('\r', false))
 goto dne;
 if (MdaPrnt ('\n', false))
 goto dne;

 // Clear the print message from the debug monitor
 MdaFill (MSG_ROW, MSG_COL+8, 0x70CD, 2);
 MdaWrite (MSG_ROW, MSG_COL, " Paused ", 8);
 return;

dne:
 MdaFill (MSG_ROW, MSG_COL+7, 0x70CD, 3);
 MdaWrite (MSG_ROW, MSG_COL, " Error ", 7);
 MdaBeep ();
}

// These are Windows only resources prints.
#if WIN > 0

void DebugPrintRes (int iWin,int iFrmt, ...)
{
va_list pVa;

 if (iLevel)
 return;

 if (LoadString (sDebug.hInst, iFrmt, sDebug.sMsg,
MAX_DEBUG_STR) <= 0)
 DebugPrint (iWin, "DebugPrintRes - No string: %d.. ",
iFrmt);
 else
 {

 197 No Bugs

 va_start (pVa, iFrmt);
 vDebugPrint (iWin, sDebug.sMsg, pVa);
 }
}

void vDebugPrintRes (int iWin,int iFrmt,void const *pVa)
{

 if (iLevel)
 return;

 if (LoadString (sDebug.hInst, iFrmt, sDebug.sMsg,
MAX_DEBUG_STR) <= 0)
 DebugPrint (iWin, "vDebugPrintRes - No string: %d.. ",
iFrmt);
 else
 vDebugPrint (iWin, sDebug.sMsg, pVa);
}

#endif

#endif

mda.c

#if DEBUG > 0

#define IBM_PRINTER

#define NUM_ROWS 25
#define NUM_COLS 80

// Defined here and in debgprn.c
#define PRINT_SCREEN 0x01
#define FILE_OFF 0x02
#define PAUSE_OFF 0x04
#define ERROR_OFF 0x08
#define PAUSED 0x10

// you use these so you can use selectors in Windows.
// For DOS they never change.
unsigned uMonoBase=0xB000, uKeyBase=0x40;

198 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

FLAG MdaInit (void)
{
volatile BYTE _far *fpScrn;

#ifdef WIN
long lNum;

 // If you are in protected mode, you need to get selectors to
the
 // video and BIOS RAM. These are magical values returned by
kernel.
 if (GetWinFlags () & WF_PMODE)
 {
 lNum = (long) GetProcAddress (GetModuleHandle
 ((LPSTR) "KERNEL"), (LPSTR)
"__B000h");
 if (LOWORD (lNum))
 uMonoBase = LOWORD (lNum);
 lNum = (long) GetProcAddress (GetModuleHandle
 ((LPSTR) "KERNEL"), (LPSTR)
"__0040h");
 if (LOWORD (lNum))
 uKeyBase = LOWORD (lNum);
 }
#endif

 // Test to see whether RAM at this location - if not - no MDA.
 // If you pass, it simply means RAM, not necessarily an MDA.
 // However, because this is for debugging, ideally the
 // developer knows what he is doing.
 fpScrn = PTR (uMonoBase, 0);
 *fpScrn = 1;
 if (*fpScrn != 1)
 return (true);
 *fpScrn = 2;
 if (*fpScrn != 2)
 return (true);

 return (false);
}

// These calls are implemented in case you want to write a
driver

 199 No Bugs

// for another monitor that is not 80x25
int MdaNumRows (void)
{

 return (NUM_ROWS);
}

int MdaNumCols (void)
{

 return (NUM_COLS);
}

// This works even under Windows to beep
void MdaBeep (void)
{

 _asm
 {
 mov ax, 0E07h
 mov bx, 0007h
 int 10h
 }
}

// Fills the screen starting at row, col with the passed in
// character/attribute pair for num pairs.
void MdaFill (int iRow,int iCol,unsigned uChrAtr,int iNum)
{

 fMemwSet (PTR (uMonoBase, iRow*NUM_COLS*2+iCol*2), uChrAtr,
iNum);
}

// Writes the passed in string starting at row, col for num
bytes.
void MdaWrite (int iRow,int iCol,BYTE const _far *pBuf,int iNum)
{
BYTE _far *fpScrn;

 fpScrn = PTR (uMonoBase, iRow * NUM_COLS * 2 + iCol * 2);
 while (iNum--)
 {
 *fpScrn = *pBuf++;
 fpScrn += 2;

200 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 }
}

// Scrolls the screen up 1 line. The block at row+1, col -
// nr, nc is moved to row, col - nr-1, nc. The line at nr, nc
// is then filled with blanks.
void MdaScroll (int iRow,int iCol,int iNr,int iNc)
{
int iNum;
BYTE _far *fpScrn;

 fpScrn = PTR (uMonoBase, iRow * NUM_COLS * 2 + iCol * 2);
 for (iNum=0; iNum<iNr-1; iNum++)
 {
 fMemCpy (fpScrn, fpScrn+NUM_COLS*2, iNc * 2);
 fpScrn += NUM_COLS * 2;
 }

 // blank line
 MdaFill (iRow + iNr - 1, iCol, 0x0720, iNc);
}

// Returns the character/attribute pair at row, col. The
character
// is in the low byte.
unsigned MdaGetChar (int iRow,int iCol)
{

 return (*(unsigned _far *) PTR (uMonoBase, iRow * NUM_COLS * 2
+ iCol * 2));
}

// Returns the toggle and shift key state. Windows only updates
the
// Num Lock, alt, ctrl, and shift keys while you are printing to
the MDA.
// Therefore, in windows, you use Num Lock instead of Scroll
Lock to
// pause the MDA.

// Scroll Lock (Num Lock) - PAUSED
// Left Shift - PAUSE_OFF (Scroll Lock still works)
// Right Shift - PRINT_SCREEN
// Ctrl - FILE_OFF
// Alt - ERROR_OFF

 201 No Bugs

BYTE MdaKey (void)
{
BYTE bTmp, bRtn;

 bTmp = *((BYTE far *) PTR (uKeyBase, 0x17));
 bRtn = 0;

#if WIN > 0
 if (bTmp & 0x20)
 bRtn = PAUSED;
#else
 if (bTmp & 0x10)
 bRtn = PAUSED;
#endif

 if (bTmp & 0x01)
 bRtn |= PRINT_SCREEN;
 if (bTmp & 0x02)
 bRtn |= PAUSE_OFF;
 if (bTmp & 0x04)
 bRtn |= FILE_OFF;
 if (bTmp & 0x08)
 bRtn |= ERROR_OFF;

 return (bRtn);
}

// Prints a character via int 17. This works under Windows
although most
// networks won't send it on until you un-pause. you don't use
DOS
// because it can't poll the printer status.
// Define IBM_PRINTER if your printer handles the full IBM
character
// set. If not, you get | and - for the dividers but any other
printed
// weird characters become spaces.
// Returns true on an error - and then printing stops.
FLAG MdaPrnt (BYTE bChr,FLAG fTran)
{

 // Do you need to translate the char?
 if (fTran)
 {

202 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

 // If your printer supports the full IBM character set -
define
 // IBM_PRINTER and it will print all the characters.
#ifdef IBM_PRINTER
 if ((bChr == '\r') || (bChr == '\n'))
 bChr = ' ';
#else

 if ((bChr < 0x20) || (bChr >= 0x7F))
 switch (bChr)
 {
 case 0xB9 :
 case 0xBA :
 case 0xCC :
 bChr = '|';
 break;
 case 0xCA :
 case 0xCB :
 case 0xCD :
 bChr = '-';
 break;
 case 0xCE :
 bChr = '+';
 break;
 default :
 bChr = ' ';
 break;
 }
#endif
 }

 // Check status and then print if possible
 _asm
 {
 mov ah, 01h
 xor dx, dx
 int 17h
 mov al, 1
 cmp ah, 90h
 jne err
 xor ah, ah
 mov al, bChr
 xor dx, dx
 int 17h
 mov al, 0

 203 No Bugs

err: mov bChr, al
 }

 return (bChr);
}

#endif

204 No Bugs

© Copyright 1992 by David Thielen - All Rights Reserved

http://www.windwardreports.com/�

	/
	Table Of Contents
	Update
	Preface
	Introduction
	Who this book is for
	No bugs
	Testing
	This book
	More Tricks

	What is a bug?
	Where bugs come from
	Tricks of the trade
	Finding those MFUs
	Create a list

	General Principles
	Debug code is read only
	Exercising code paths
	Walking each path
	Forcing actions
	Rock-solid low-level functions
	/
	Debugging in conditional defines
	Comment your open Issues
	Keep it unobtrusive

	Some Basic Tricks
	TestAll functions
	Restoring system state
	ENTER / EXIT logging
	Error Message file
	Object-oriented programming
	Filling buffers
	NULL pointers
	Prototyping including CONST
	CRC Checking
	Roll your Own

	Assert the World
	Assert to the rescue
	AssertBool
	AssertInt
	AssertStr
	Assert a structure
	/
	Parameter validation
	Assert everything

	Debug Printfs
	Message Box
	Debug printf
	Conditional printfs
	Conditional defines
	Using variables

	Watching the Stack
	Stack Space

	Watching the Heap
	The concepts behind the code
	Some details
	Allocate some memory
	How to use the memory
	Be sure all freed
	Asserting a pointer to the heap
	EMS and XMS
	Handle tracking
	Expanded memory (EMS)
	Extended memory (XMS)

	File I/O
	Consistency checks
	Assertion
	Open
	Check handle-based calls
	Seek
	Read
	Write
	Close

	Special Tricks for c++
	Override global new and delete
	Constructors and destructors
	Base class assert
	A debug class

	Special Tricks for assembly language
	Trap and IntTest
	BUGBUG
	Checking registers
	Creating local variables
	Wrapping it all together

	The Testing Process
	Developers and testers
	Warts and all
	Setting up the process
	The plan
	Automation
	Bug reporting
	The bug database
	The testing process

	Internal Testing
	White box testing
	Black box testing
	Designing the tests
	Running the tests
	Testing platforms
	Testing, testing

	The Beta Test
	When to beta
	When to ship
	Selecting beta sites
	Handling bug reports

	Shipping the Product
	To release or not to release
	Management
	Putting it all together
	Dire warning

	Useful bug-discovery tools
	Bounds Checker
	MemCheck
	/Microsoft Test
	/Multiscope post-mortem debugger
	/Windows Dr. Watson
	Windows debug version
	RT-link
	Debuggers
	Periscope
	/Soft-Ice
	/Multiscope
	/New tools
	The End

	Debug Message Boxes
	Debug Second Monitor

